Ashley J Ruiter

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4691104/publications.pdf

Version: 2024-02-01

126858 118793 4,606 63 33 62 citations h-index g-index papers 65 65 65 3780 docs citations times ranked citing authors all docs

#	Article	IF	CITATIONS
1	A kilonova as the electromagnetic counterpart to a gravitational-wave source. Nature, 2017, 551, 75-79.	13.7	601
2	Three-dimensional delayed-detonation models with nucleosynthesis for Type Ia supernovae. Monthly Notices of the Royal Astronomical Society, 2013, 429, 1156-1172.	1.6	381
3	Sub-luminous type la supernovae from the mergers of equal-mass white dwarfs with mass â^⅓0.9M⊙. Nature, 2010, 463, 61-64.	13.7	307
4	DETONATIONS IN SUB-CHANDRASEKHAR-MASS C+O WHITE DWARFS. Astrophysical Journal Letters, 2010, 714, L52-L57.	3.0	296
5	RATES AND DELAY TIMES OF TYPE Ia SUPERNOVAE. Astrophysical Journal, 2009, 699, 2026-2036.	1.6	256
6	Towards an understanding of Type Ia supernovae from a synthesis of theory and observations. Frontiers of Physics, 2013, 8, 116-143.	2.4	232
7	Three-dimensional pure deflagration models with nucleosynthesis and synthetic observables for Type la supernovae. Monthly Notices of the Royal Astronomical Society, 2014, 438, 1762-1783.	1.6	208
8	3D deflagration simulations leaving bound remnants: a model for 2002cx-like Type Ia supernovaeâ~ Monthly Notices of the Royal Astronomical Society, 2013, 429, 2287-2297.	1.6	175
9	Delay times and rates for Type Ia supernovae and thermonuclear explosions from double-detonation sub-Chandrasekhar mass models. Monthly Notices of the Royal Astronomical Society, 2011, 417, 408-419.	1.6	128
10	Solar abundance of manganese: a case for near Chandrasekhar-mass Type Ia supernova progenitors. Astronomy and Astrophysics, 2013, 559, L5.	2.1	122
11	2D simulations of the double-detonation model for thermonuclear transients from low-mass carbon-oxygen white dwarfs. Monthly Notices of the Royal Astronomical Society, 2012, 420, 3003-3016.	1.6	121
12	THE <i>LISA</i> GRAVITATIONAL WAVE FOREGROUND: A STUDY OF DOUBLE WHITE DWARFS. Astrophysical Journal, 2010, 717, 1006-1021.	1.6	113
13	On the brightness distribution of Type Ia supernovae from violent white dwarf mergers. Monthly Notices of the Royal Astronomical Society, 2013, 429, 1425-1436.	1.6	107
14	The ejected mass distribution of Type Ia supernovae: a significant rate of non-Chandrasekhar-mass progenitors. Monthly Notices of the Royal Astronomical Society, 2014, 445, 2535-2544.	1.6	104
15	Deflagrations in hybrid CONe white dwarfs: a route to explain the faint Type lax supernova 2008ha. Monthly Notices of the Royal Astronomical Society, 2015, 450, 3045-3053.	1.6	104
16	Synthetic light curves and spectra for three-dimensional delayed-detonation models of Type Ia supernovae. Monthly Notices of the Royal Astronomical Society, 2013, 436, 333-347.	1.6	87
17	PopCORN: Hunting down the differences between binary population synthesis codes. Astronomy and Astrophysics, 2014, 562, A14.	2.1	76
18	SPECTRA OF TYPE IA SUPERNOVAE FROM DOUBLE DEGENERATE MERGERS. Astrophysical Journal, 2010, 725, 296-308.	1.6	73

#	Article	IF	CITATIONS
19	The effect of helium accretion efficiency on rates of Type Ia supernovae: double detonations in accreting binaries. Monthly Notices of the Royal Astronomical Society: Letters, 2014, 440, L101-L105.	1.2	60
20	450 d of Type II SN 2013ej in optical and near-infrared. Monthly Notices of the Royal Astronomical Society, 2016, 461, 2003-2018.	1.6	57
21	Three-dimensional simulations of gravitationally confined detonations compared to observations of SN 1991T. Astronomy and Astrophysics, 2016, 592, A57.	2.1	56
22	The type lax supernova, SN 2015H. Astronomy and Astrophysics, 2016, 589, A89.	2.1	55
23	Type la supernovae from exploding oxygen-neon white dwarfs. Astronomy and Astrophysics, 2015, 580, All8.	2.1	54
24	New Constraints on Type Ia Supernova Progenitor Models. Astrophysical Journal, 2005, 629, 915-921.	1.6	51
25	On the formation of neutron stars via accretion-induced collapse in binaries. Monthly Notices of the Royal Astronomical Society, 2019, 484, 698-711.	1.6	50
26	Remnants and ejecta of thermonuclear electron-capture supernovae. Astronomy and Astrophysics, 2019, 622, A74.	2.1	47
27	The late-time light curve of the Type Ia supernova SN 2011fe. Monthly Notices of the Royal Astronomical Society, 2017, 468, 3798-3812.	1.6	42
28	Diffuse Galactic antimatter from faint thermonuclear supernovae in old stellar populations. Nature Astronomy, 2017, 1 , .	4.2	40
29	i-process Contribution of Rapidly Accreting White Dwarfs to the Solar Composition of First-peak Neutron-capture Elements. Astrophysical Journal, 2018, 854, 105.	1.6	39
30	Nucleosynthesis imprints from different Type Ia supernova explosion scenarios and implications for galactic chemical evolution. Astronomy and Astrophysics, 2020, 644, A118.	2.1	37
31	Predicting polarization signatures for double-detonation and delayed-detonation models of Type Ia supernovae. Monthly Notices of the Royal Astronomical Society, 2016, 462, 1039-1056.	1.6	36
32	VERY LATE PHOTOMETRY OF SN 2011fe. Astrophysical Journal Letters, 2014, 796, L26.	3.0	34
33	SNÂ2017ens: The Metamorphosis of a Luminous Broadlined Type Ic Supernova into an SNÂIIn. Astrophysical Journal Letters, 2018, 867, L31.	3.0	33
34	Spectroscopy of the Type Ia supernova 2011fe past 1000 d. Monthly Notices of the Royal Astronomical Society: Letters, 2015, 448, L48-L52.	1.2	31
35	Type la supernova sub-classes and progenitor origin. Proceedings of the International Astronomical Union, 2019, 15, 1-15.	0.0	31
36	Calibrating Interstellar Abundances Using Supernova Remnant Radiative Shocks. Astronomical Journal, 2019, 157, 50.	1.9	31

#	Article	IF	CITATIONS
37	Extremely late photometry of the nearby SN 2011fe. Monthly Notices of the Royal Astronomical Society, 2017, 472, 2534-2542.	1.6	30
38	5.9-keV Mn K-shell X-ray luminosity from the decay of 55Fe in Type Ia supernova models. Monthly Notices of the Royal Astronomical Society, 2015, 447, 1484-1490.	1.6	25
39	OGLE-2013-SN-079: A LONELY SUPERNOVA CONSISTENT WITH A HELIUM SHELL DETONATION. Astrophysical Journal Letters, 2015, 799, L2.	3.0	25
40	The Nature of the Faint Chandra X-Ray Sources in the Galactic Center. Astrophysical Journal, 2006, 640, L167-L170.	1.6	22
41	THE CONTRIBUTION OF HALO WHITE DWARF BINARIES TO THE <i>LASER INTERFEROMETER SPACE ANTENNA < i>SIGNAL. Astrophysical Journal, 2009, 693, 383-387.</i>	1.6	22
42	Neutrino and gravitational wave signal of a delayed-detonation model of type Ia supernovae. Physical Review D, 2015, 92, .	1.6	22
43	Red and Reddened: Ultraviolet through Near-infrared Observations of Type Ia Supernova 2017erp*. Astrophysical Journal, 2019, 877, 152.	1.6	22
44	R CORONAE BOREALIS STARS ARE VIABLE FACTORIES OF PRE-SOLAR GRAINS. Astrophysical Journal, 2015, 809, 184.	1.6	19
45	Identification of the central compact object in the young supernova remnant 1E 0102.2–7219. Nature Astronomy, 2018, 2, 465-471.	4.2	19
46	Millisecond pulsars from accretion-induced collapse as the origin of the Galactic Centre gamma-ray excess signal. Nature Astronomy, 2022, 6, 703-707.	4.2	18
47	Shocked Interstellar Clouds and Dust Grain Destruction in the LMC Supernova Remnant N132D. Astrophysical Journal, Supplement Series, 2018, 237, 10.	3.0	17
48	SN1991bg-like supernovae are associated with old stellar populations. Publications of the Astronomical Society of Australia, 2019, 36, .	1.3	15
49	Linking the X3D Pathway to Integral Field Spectrographs: YSNR 1E 0102.2-7219 in the SMC as a Case Study. Publications of the Astronomical Society of the Pacific, 2017, 129, 058012.	1.0	12
50	Integral Field Spectroscopy of Supernova Remnant 1E0102–7219 Reveals Fast-moving Hydrogen and Sulfur-rich Ejecta. Astrophysical Journal Letters, 2018, 853, L32.	3.0	12
51	The X-ray emissivity of low-density stellar populations. Monthly Notices of the Royal Astronomical Society, 2020, 492, 5684-5708.	1.6	12
52	Positron annihilation in the nuclear outflows of the Milky Way. Monthly Notices of the Royal Astronomical Society: Letters, 2018, 474, L17-L21.	1.2	10
53	Population synthesis of accreting white dwarfs: rates and evolutionary pathways of H and He novae. Monthly Notices of the Royal Astronomical Society, 2021, 504, 6117-6143.	1.6	7
54	Prospects of direct detection of 48V gamma-rays from thermonuclear supernovae. Monthly Notices of the Royal Astronomical Society, 2021, 508, 1590-1598.	1.6	4

ASHLEY J RUITER

#	Article	IF	CITATIONS
55	LIN 358: a symbiotic binary accreting above the steady hydrogen fusion limit. Monthly Notices of the Royal Astronomical Society, 2020, 500, 3763-3775.	1.6	3
56	A Supernova Remnant Counterpart for HESS J1832â^'085. Astrophysical Journal, 2019, 885, 129.	1.6	2
57	Searching for Surviving Companion in the Young SMC Supernova Remnant 1E 0102.2–7219. Astrophysical Journal, 2021, 915, 20.	1.6	2
58	Type Ia Supernovae from Sub-Chandrasekhar Mass White Dwarfs. Proceedings of the International Astronomical Union, 2011, 7, 267-274.	0.0	1
59	MUSE Integral Field Observations of the Oxygen-rich SNR 1E 0102.2-7219. Proceedings of the International Astronomical Union, 2017, 12, 178-183.	0.0	1
60	First Results of the SkyMapper Transient Survey. Proceedings of the International Astronomical Union, 2017, 14, 3-6.	0.0	1
61	The Impact of Nuclear Physics Uncertainties on Galactic Chemical Evolution Predictions. Journal of Physics: Conference Series, 2020, 1668, 012008.	0.3	1
62	Thermonuclear Supernova Explosions from White Dwarfs in Different Progenitor Systems. Proceedings of the International Astronomical Union, 2011, 7, 261-266.	0.0	0
63	SN1991bg-like supernovae are a compelling source of most Galactic antimatter. Proceedings of the International Astronomical Union, 2016, 11, 176-179.	0.0	0