Alessandro Presentato

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4690831/publications.pdf

Version: 2024-02-01

38 papers 1,307 citations

331670 21 h-index 35 g-index

42 all docs 42 docs citations

42 times ranked 1237 citing authors

#	Article	IF	CITATIONS
1	Conservation state of two paintings in the Santa Margherita cliff cave: role of the environment and of the microbial community. Environmental Science and Pollution Research, 2022, 29, 29510-29523.	5.3	6
2	Cross-linked natural IntegroPectin films from citrus biowaste with intrinsic antimicrobial activity. Cellulose, 2022, 29, 5779-5802.	4.9	11
3	A Comparative Analysis of Aquatic and Polyethylene-Associated Antibiotic-Resistant Microbiota in the Mediterranean Sea. Biology, 2021, 10, 200.	2.8	19
4	New Neuroprotective Effect of Lemon IntegroPectin on Neuronal Cellular Model. Antioxidants, 2021, 10, 669.	5.1	22
5	Biogenic Selenium Nanoparticles: A Fine Characterization to Unveil Their Thermodynamic Stability. Nanomaterials, 2021, 11, 1195.	4.1	18
6	Untargeted Metabolomics Investigation on Selenite Reduction to Elemental Selenium by Bacillus mycoides SeITE01. Frontiers in Microbiology, 2021, 12, 711000.	3.5	6
7	Volatile Compounds of Lemon and Grapefruit IntegroPectin. Molecules, 2021, 26, 51.	3.8	25
8	Flavonoids in Lemon and Grapefruit IntegroPectin**. ChemistryOpen, 2021, 10, 1055-1058.	1.9	14
9	Lipid Nanocarriers-Loaded Nanocomposite as a Suitable Platform to Release Antibacterial and Antioxidant Agents for Immediate Dental Implant Placement Restorative Treatment. Pharmaceutics, 2021, 13, 2072.	4.5	10
10	A New Water-Soluble Bactericidal Agent for the Treatment of Infections Caused by Gram-Positive and Gram-Negative Bacterial Strains. Antibiotics, 2020, 9, 586.	3.7	41
11	A combined physical–chemical and microbiological approach to unveil the fabrication, provenance, and state of conservation of the Kinkarakawa-gami art. Scientific Reports, 2020, 10, 16072.	3.3	11
12	Pectin: A Longâ€Neglected Broadâ€Spectrum Antibacterial. ChemMedChem, 2020, 15, 2228-2235.	3.2	53
13	Formulation of Mesoporous Silica Nanoparticles for Controlled Release of Antimicrobials for Stone Preventive Conservation. Frontiers in Chemistry, 2020, 8, 699.	3.6	21
14	Biotechnology of Rhodococcus for the production of valuable compounds. Applied Microbiology and Biotechnology, 2020, 104, 8567-8594.	3.6	85
15	Processing of Metals and Metalloids by Actinobacteria: Cell Resistance Mechanisms and Synthesis of Metal(loid)-Based Nanostructures. Microorganisms, 2020, 8, 2027.	3.6	31
16	Antibacterial PEGylated Solid Lipid Microparticles for Cosmeceutical Purpose: Formulation, Characterization, and Efficacy Evaluation. Materials, 2020, 13, 2073.	2.9	11
17	Superior Antibacterial Activity of Integral Lemon Pectin Extracted via Hydrodynamic Cavitation. ChemistryOpen, 2020, 9, 628-630.	1.9	39
18	Is Caretta Caretta a Carrier of Antibiotic Resistance in the Mediterranean Sea?. Antibiotics, 2020, 9, 116.	3.7	45

#	Article	IF	CITATIONS
19	New Synthetic Nitro-Pyrrolomycins as Promising Antibacterial and Anticancer Agents. Antibiotics, 2020, 9, 292.	3.7	35
20	On the Ability of Perfluorohexane Sulfonate (PFHxS) Bioaccumulation by Two Pseudomonas sp. Strains Isolated from PFAS-Contaminated Environmental Matrices. Microorganisms, 2020, 8, 92.	3.6	49
21	Graphene Oxide Carboxymethylcellulose Nanocomposite for Dressing Materials. Materials, 2020, 13, 1980.	2.9	31
22	Tunable photoluminescence properties of selenium nanoparticles: biogenic versus chemogenic synthesis. Nanophotonics, 2020, 9, 3615-3628.	6.0	16
23	Influence of Bacterial Physiology on Processing of Selenite, Biogenesis of Nanomaterials and Their Thermodynamic Stability. Molecules, 2019, 24, 2532.	3.8	23
24	Identification of Resistance Genes and Response to Arsenic in Rhodococcus aetherivorans BCP1. Frontiers in Microbiology, 2019, 10, 888.	3.5	38
25	Tellurite-dependent blackening of bacteria emerges from the dark ages. Environmental Chemistry, 2019, 16, 266.	1.5	41
26	Interaction of Rhodococcus with Metals and Biotechnological Applications. Microbiology Monographs, 2019, , 333-357.	0.6	11
27	Stability of biogenic metal(loid) nanomaterials related to the colloidal stabilization theory of chemical nanostructures. Critical Reviews in Biotechnology, 2018, 38, 1137-1156.	9.0	54
28	Assembly, growth and conductive properties of tellurium nanorods produced by Rhodococcus aetherivorans BCP1. Scientific Reports, 2018, 8, 3923.	3.3	47
29	Selenium and tellurium nanomaterials. ChemistrySelect, 2018, 3, .	1.5	18
30	Biosynthesis of selenium-nanoparticles and -nanorods as a product of selenite bioconversion by the aerobic bacterium Rhodococcus aetherivorans BCP1. New Biotechnology, 2018, 41, 1-8.	4.4	79
31	Physical–Chemical Properties of Biogenic Selenium Nanostructures Produced by Stenotrophomonas maltophilia SeITE02 and Ochrobactrum sp. MPV1. Frontiers in Microbiology, 2018, 9, 3178.	3.5	37
32	Aerobic Growth of Rhodococcus aetherivorans BCP1 Using Selected Naphthenic Acids as the Sole Carbon and Energy Sources. Frontiers in Microbiology, 2018, 9, 672.	3.5	40
33	Antimicrobial activity of biogenically produced spherical Seâ€nanomaterials embedded in organic material against <i>Pseudomonas aeruginosa</i> andÂ <i>Staphylococcus aureus</i> strains on hydroxyapatiteâ€coated surfaces. Microbial Biotechnology, 2017, 10, 804-818.	4.2	67
34	Ochrobactrum sp. MPV1 from a dump of roasted pyrites can be exploited as bacterial catalyst for the biogenesis of selenium and tellurium nanoparticles. Microbial Cell Factories, 2017, 16, 215.	4.0	76
35	Rhodococcus aetherivorans BCP1 as cell factory for the production of intracellular tellurium nanorods under aerobic conditions. Microbial Cell Factories, 2016, 15, 204.	4.0	50
36	Growth of Rhodococcus sp. strain BCP1 on gaseous n-alkanes: new metabolic insights and transcriptional analysis of two soluble di-iron monooxygenase genes. Frontiers in Microbiology, 2015, 6, 393.	3.5	60

#	Article	IF	CITATIONS
37	Genome and Phenotype Microarray Analyses of Rhodococcus sp. BCP1 and Rhodococcus opacus R7: Genetic Determinants and Metabolic Abilities with Environmental Relevance. PLoS ONE, 2015, 10, e0139467.	2.5	53
38	Microbial-Based Bioremediation of Selenium and Tellurium Compounds. , 0, , .		9