Jorge FernÃ;ndez HernÃ;ndez

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4690736/publications.pdf

Version: 2024-02-01

#	Article	IF	CITATIONS
1	Synthesis, structure and properties of poly(L-lactide-cocaprolactone) statistical copolymers. Journal of the Mechanical Behavior of Biomedical Materials, 2012, 9, 100-112.	3.1	162
2	Effects of chain microstructures on mechanical behavior and aging of a poly(L-lactide-co- <mml:math) etqq0<="" td="" tj=""><td>0 0 rgBT /C</td><td>Overlock 10 Tf</td></mml:math)>	0 0 rgBT /C	Overlock 10 Tf
	thermoplastic-elastomer. Journal of the Mechanical Behavior of Biomedical Materials, 2012, 12, 29-38.	3.1	51
3	In vitro degradation studies and mechanical behavior of poly(ε-caprolactone-co-Î-valerolactone) and poly(ε-caprolactone-co-L-lactide) with random and semi-alternating chain microstructures. European Polymer Journal, 2015, 71, 585-595.	5.4	28
4	Synthesis and characterization of Ϊ‰-pentadecalactone-co-ε-decalactone copolymers: Evaluation of thermal, mechanical and biodegradation properties. Polymer, 2015, 81, 12-22.	3.8	27
5	Effect of molecular weight on the physical properties of poly(ethylene brassylate) homopolymers. Journal of the Mechanical Behavior of Biomedical Materials, 2016, 64, 209-219.	3.1	26
6	Design, Degradation Mechanism and Longâ€Term Cytotoxicity of Poly(<scp>l</scp> â€lactide) and Poly(Lactideâ€coâ€iµâ€Caprolactone) Terpolymer Film and Airâ€Spun Nanofiber Scaffold. Macromolecular Bioscience, 2015, 15, 1392-1410.	4.1	25
7	Ethylene brassylate-co-l̂´-hexalactone biobased polymers for application in the medical field: synthesis, characterization and cell culture studies. RSC Advances, 2016, 6, 22121-22136.	3.6	22
8	Morphology and mechanical properties of poly(ethylene brassylate)/cellulose nanocrystal composites. Carbohydrate Polymers, 2019, 221, 137-145.	10.2	22
9	Synthesis and properties of Ϊ‰-pentadecalactone-co-Ĩ´-hexalactone copolymers: a biodegradable thermoplastic elastomer as an alternative to poly(ε-caprolactone). RSC Advances, 2016, 6, 3137-3149.	3.6	20
10	Mechanical properties and fatigue analysis on poly(ε-caprolactone)-polydopamine-coated nanofibers and poly(ε-caprolactone)-carbon nanotube composite scaffolds. European Polymer Journal, 2017, 94, 208-221.	5.4	19
11	Ethylene brassylate: Searching for new comonomers that enhance the ductility and biodegradability of polylactides. Polymer Degradation and Stability, 2017, 137, 23-34.	5.8	17
12	Crystallization and melting behavior of poly(εâ€caprolactoneâ€coâ€Î´â€valerolactone) and poly(εâ€caprolactoneâ€co‣″actide) copolymers with novel chain microstructures. Journal of Applied Polymer Science, 2015, 132, .	2.6	13
13	Release mechanisms of urinary tract antibiotics when mixed with bioabsorbable polyesters. Materials Science and Engineering C, 2018, 93, 529-538.	7.3	13
14	Electrospun Fibers of Polyester, with Both Nano- and Micron Diameters, Loaded with Antioxidant for Application as Wound Dressing or Tissue Engineered Scaffolds. ACS Applied Polymer Materials, 2019, 1, 1096-1106.	4.4	11
15	Electrical percolation in extrinsically conducting, poly(Îμ-decalactone) composite neural interface materials. Scientific Reports, 2021, 11, 1295.	3.3	11
16	A flexible strain-responsive sensor fabricated from a biocompatible electronic ink via an additive-manufacturing process. Materials and Design, 2021, 206, 109700.	7.0	11
17	Improving the barrier character of polylactide/phenoxy immiscible blend using poly(lactideâ€ <i>co</i> â€É›â€caprolactone) block copolymer as a compatibilizer. Journal of Applied Polymer Science, 2017, 134, 45396.	2.6	10
18	Plasticization of poly(lactide) with poly(ethylene glycol): Low weight plasticizer vs triblock copolymers. Effect on free volume and barrier properties. Journal of Applied Polymer Science, 2020, 137, 48868.	2.6	10

#	Article	lF	CITATIONS
19	Crystallization Rate Minima of Poly(ethylene brassylate) at Temperatures Transitioning between Quantized Crystal Thicknesses. Macromolecules, 2022, 55, 3958-3973.	4.8	10
20	Analysis of a poly(Îμ-decalactone)/silver nanowire composite as an electrically conducting neural interface biomaterial. BMC Biomedical Engineering, 2019, 1, 9.	2.6	7
21	Grafting of a model protein on lactide and caprolactone based biodegradable films for biomedical applications. Biomatter, 2014, 4, e27979.	2.6	6
22	Novel biodegradable and non-fouling systems for controlled-release based on poly(ε-caprolactone)/Quercetin blends and biomimetic bacterial S-layer coatings. RSC Advances, 2019, 9, 24154-24163.	3.6	5