List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4690662/publications.pdf Version: 2024-02-01

SHE FUN CHIN

#	Article	IF	CITATIONS
1	Antimicrobial Starchâ€Based Film for Food Packaging Application. Starch/Staerke, 2022, 74, .	2.1	13
2	MODELLING THE EFFECT OF WOOD AND MAIZE COB-DERIVED BIOCHAR APPLICATION ON SOIL DYNAMICS AND MAIZE GROWTH FOR SUSTAINABLE AGRICULTURE. Journal of Sustainability Science and Management, 2022, 17, 3-23.	0.5	0
3	Green Synthesis and Characterization of Amineâ€Modified Starch Nanoparticles. Starch/Staerke, 2021, 73, 2000020.	2.1	3
4	Starch Acetate Nanoparticles as Controlled Release Nanocarriers for Piperine. Starch/Staerke, 2021, 73, 2100054.	2.1	1
5	Formulation of choline chloride/ascorbic acid natural deep eutectic solvent: Characterization, solubilization capacity and antioxidant property. LWT - Food Science and Technology, 2020, 133, 110096.	5.2	49
6	pH-responsive carboxylic cellulose acetate nanoparticles for controlled release of penicillin G. Journal of Science: Advanced Materials and Devices, 2020, 5, 224-232.	3.1	9
7	Synthesis and characterization of single phase ZnO nanostructures via solvothermal method: influence of alkaline source. Biointerface Research in Applied Chemistry, 2020, 10, 5648-5655.	1.0	6
8	Synthesis and Characterisation of Piperine-loaded Starch Nanoparticles. Journal of Physical Science, 2020, 31, 57-68.	0.9	7
9	Antimicrobial starch-citrate hydrogel for potential applications as drug delivery carriers. Journal of Drug Delivery Science and Technology, 2019, 54, 101239.	3.0	28
10	pHâ€Responsive Starchâ€Citrate Nanoparticles for Controlled Release of Paracetamol. Starch/Staerke, 2019, 71, 1800336.	2.1	12
11	Size controlled fabrication of cellulose nanoparticles for drug delivery applications. Journal of Drug Delivery Science and Technology, 2018, 43, 262-266.	3.0	47
12	Conversion of Sago (Metroxylon sagu) Pith Waste to Fermentable Sugars via a Facile Depolymerization Process. Applied Biochemistry and Biotechnology, 2018, 184, 1142-1154.	2.9	1
13	Controlled Depolymerization of Cellulose Fibres Isolated from Lignocellulosic Biomass Wastes. International Journal of Polymer Science, 2018, 2018, 1-11.	2.7	7
14	Utilising the interface interaction on tris(hydroxymethy)aminomethane-capped carbon dots to enhance the sensitivity and selectivity towards the detection of Co(II) ions. Sensors and Actuators B: Chemical, 2018, 273, 83-92.	7.8	18
15	Synthesis and Characterization of Zinc Oxide Nanoparticles with Small Particle Size Distribution. Acta Chimica Slovenica, 2018, 65, 578-585.	0.6	105
16	The luminescence profile of carbon dots synthesized from α-cellulose under different acid hydrolysis conditions. Optical Materials, 2017, 70, 50-56.	3.6	17
17	Carbon nanoparticle modified screen printed carbon electrode as a disposable electrochemical immunosensor strip for the detection of Japanese encephalitis virus. Mikrochimica Acta, 2017, 184, 491-497.	5.0	45
18	Nitrogen doped carbon nanodots as fluorescent probes for selective detection and quantification of Ferric(III) ions. Optical Materials, 2017, 73, 77-82.	3.6	12

#	Article	IF	CITATIONS
19	Disposable Carbon Dots Modified Screen Printed Carbon Electrode Electrochemical Sensor Strip for Selective Detection of Ferric Ions. Journal of Sensors, 2017, 2017, 1-7.	1.1	6
20	Porous Cellulose Beads Fabricated from Regenerated Cellulose as Potential Drug Delivery Carriers. Journal of Chemistry, 2017, 2017, 1-11.	1.9	22
21	Carbon Nanoparticles Based Electrochemical Biosensor Strip for Detection of Japanese Encephalitis Virus. Journal of Nanomaterials, 2017, 2017, 1-7.	2.7	30
22	Optimizing Delivery Characteristics of Curcumin as a Model Drug via Tailoring Mean Diameter Ranges of Cellulose Beads. International Journal of Polymer Science, 2017, 2017, 1-10.	2.7	9
23	A Novel Silver Nanoparticles-based Sensing Probe for the Detection of Japanese Encephalitis Virus Antigen. Sains Malaysiana, 2017, 46, 2447-2454.	0.5	10
24	A unique "turn-on―fluorescence signalling strategy for highly specific detection of ascorbic acid using carbon dots as sensing probe. Biosensors and Bioelectronics, 2016, 85, 844-852.	10.1	110
25	Regeneration of cello-oligomers via selective depolymerization of cellulose fibers derived from printed paper wastes. Carbohydrate Polymers, 2016, 142, 31-37.	10.2	24
26	Carbon nanodots as molecular scaffolds for development of antimicrobial agents. Bioorganic and Medicinal Chemistry Letters, 2016, 26, 1745-1749.	2.2	14
27	Highly porous cellulose beads of controllable sizes derived from regenerated cellulose of printed paper wastes. Materials Letters, 2016, 164, 264-266.	2.6	35
28	Synthesis and Characterization of Silver/Titanium dioxide Core-Shell Nanoparticles. Borneo Journal of Resource Science and Technology, 2016, 3, 21-24.	0.1	0
29	Nanostructured Multilayer Composite Films of Manganese Dioxide/Nickel/Copper Sulfide Deposited on Polyethylene Terephthalate Supporting Substrate. Journal of Nanomaterials, 2015, 2015, 1-11.	2.7	2
30	Manganese Dioxide Nanowires of Tunable Dimensions Synthesized via a Facile Hydrothermal Route. Journal of Nanomaterials, 2015, 2015, 1-5.	2.7	3
31	Facile synthesis of carbon nanoparticles from sodium alginate via ultrasonic-assisted nano-precipitation and thermal acid dehydration for ferric ion sensing. Sensors and Actuators B: Chemical, 2015, 209, 997-1004.	7.8	50
32	Facile synthesis of nickel nanowires with controllable morphology. Materials Letters, 2015, 142, 1-3.	2.6	22
33	Preparation and Characterization of Starch Nanoparticles for Controlled Release of Curcumin. International Journal of Polymer Science, 2014, 2014, 1-8.	2.7	83
34	Preparation and Characterization of Chitosan Nanoparticles-Doped Cellulose Films with Antimicrobial Property. Journal of Nanomaterials, 2014, 2014, 1-10.	2.7	58
35	Size Controlled Synthesis of Starch Nanoparticles by a Microemulsion Method. Journal of Nanomaterials, 2014, 2014, 1-7.	2.7	44
36	Fluorescein-Labeled Starch Maleate Nanoparticles as Sensitive Fluorescent Sensing Probes for Metal Ions. Journal of Nanomaterials, 2014, 2014, 1-8.	2.7	6

#	Article	IF	CITATIONS
37	Facile Synthesis of Curcumin-Loaded Starch-Maleate Nanoparticles. Journal of Nanomaterials, 2014, 2014, 1-7.	2.7	17
38	Carbon dots production via pyrolysis of sago waste as potential probe for metal ions sensing. Journal of Analytical and Applied Pyrolysis, 2014, 105, 157-165.	5.5	143
39	Fabrication of hydrophobic and magnetic cellulose aerogel with high oil absorption capacity. Materials Letters, 2014, 115, 241-243.	2.6	146
40	Starch-based gel electrolyte thin films derived from native sago (Metroxylon sagu) starch. Ionics, 2014, 20, 1455-1462.	2.4	18
41	Detection of Sn(II) ions via quenching of the fluorescence of carbon nanodots. Mikrochimica Acta, 2013, 180, 137-143.	5.0	98
42	Interface Study on Zinc Oxide Quantum Dots Using Fluorometric and Regression Analysis in View of Optical Sensing. Analytical Letters, 2013, 46, 1278-1288.	1.8	7
43	Integrated miniature fluorescent probe to leverage the sensing potential of ZnO quantum dots for the detection of copper (II) ions. Talanta, 2013, 116, 514-519.	5.5	31
44	Fabrication of Magnetite/Silica/Titania Core-Shell Nanoparticles. Journal of Nanomaterials, 2012, 2012, 1-6.	2.7	23
45	Controlled Synthesis of Manganese Dioxide Nanostructures via a Facile Hydrothermal Route. Journal of Nanomaterials, 2012, 2012, 1-7.	2.7	15
46	Synthesis and Characterization of Novel Water Soluble Starch Tartarate Nanoparticles. ISRN Materials Science, 2012, 2012, 1-5.	1.0	6
47	Facile synthesis of fluorescent carbon nanodots from starch nanoparticles. Materials Letters, 2012, 85, 50-52.	2.6	47
48	A facile approach for controlled synthesis of hydrophilic starchâ€based nanoparticles from native sago starch. Starch/Staerke, 2012, 64, 984-990.	2.1	26
49	Facile synthesis of starch-maleate monoesters from native sago starch. Carbohydrate Polymers, 2012, 88, 1195-1200.	10.2	44
50	Synthesis and Characterization of Magnetite/Carbon Nanocomposite Thin Films for Electrochemical Applications. Journal of Materials Science and Technology, 2011, 27, 873-878.	10.7	15
51	Preparation and Characterization of Self-Assembled Manganese Dioxide Thin Films. Journal of Nanotechnology, 2011, 2011, 1-7.	3.4	3
52	Sol-gel synthesis of silver/titanium dioxide (Ag/TiO2) core-shell nanowires for photocatalytic applications. Materials Letters, 2011, 65, 2673-2675.	2.6	37
53	Size controlled synthesis of starch nanoparticles by a simple nanoprecipitation method. Carbohydrate Polymers, 2011, 86, 1817-1819.	10.2	203
54	Starch–maleate–polyvinyl alcohol hydrogels with controllable swelling behaviors. Carbohydrate Polymers, 2011, 84, 424-429.	10.2	64

#	Article	IF	CITATIONS
55	The Capacitive Behaviors of Manganese Dioxide Thin-Film Electrochemical Capacitor Prototypes. International Journal of Electrochemistry, 2011, 2011, 1-10.	2.4	26
56	Nanoparticulate magnetite thin films as electrode materials for the fabrication of electrochemical capacitors. Journal of Materials Science, 2010, 45, 5598-5604.	3.7	49
57	Tetrapropylammonium-manganese oxide/polypyrrole hybrid nanocomposite thin films as novel electrode materials for supercapacitors. Materials Chemistry and Physics, 2010, 124, 29-32.	4.0	12
58	Self-assembled manganese dioxide nanowires as electrode materials for electrochemical capacitors. Materials Letters, 2010, 64, 2670-2672.	2.6	36
59	Superparamagnetic core-shell nanoparticles for biomedical applications. , 2010, , .		1
60	Encapsulation and Sustained Release of Curcumin using Superparamagnetic Silica Reservoirs. Chemistry - A European Journal, 2009, 15, 5661-5665.	3.3	52
61	Facile and Green Approach To Fabricate Cold and Silver Coated Superparamagnetic Nanoparticles. Crystal Growth and Design, 2009, 9, 2685-2689.	3.0	81
62	Size Selective Synthesis of Superparamagnetic Nanoparticles in Thin Fluids under Continuous Flow Conditions. Advanced Functional Materials, 2008, 18, 922-927.	14.9	71
63	Fabrication of carbon nano-tubes decorated with ultra fine superparamagnetic nano-particles under continuous flow conditions. Lab on A Chip, 2008, 8, 439.	6.0	39
64	Redox equilibria of iron oxides in aqueous-based magnetite dispersions: Effect of pH and redox potential. Journal of Colloid and Interface Science, 2007, 311, 94-101.	9.4	79
65	Magnetite ferrofluids stabilized by sulfonato-calixarenes. Chemical Communications, 2007, , 1948.	4.1	41
66	Encapsulation of Magnetic Nanoparticles with Biopolymer for Biomedical Application. , 2006, , .		0
67	Synthesis and Characterization of Manganese Oxide and Hybrid Nanocomposite Thin Films. , 2006, , .		0
68	Material and Electrochemical Characterization of Tetrapropylammonium Manganese Oxide Thin Films as Novel Electrode Materials for Electrochemical Capacitors. Journal of the Electrochemical Society, 2002, 149, A379.	2.9	135
69	Sorption of Coated and Uncoated Nanocrystalline Zinc Oxide from Aqueous Solutions onto Raw and Acetylated Cellulose Sago Hampas: Equilibrium, Kinetic and Thermodynamic Studies. Defect and Diffusion Forum, 0, 411, 37-54.	0.4	1
70	Variation of Alkali Concentration and Temperature: Its Effect on the Morphology of ZnO Nanoparticles Synthesized via Solvothermal Technique. Defect and Diffusion Forum, 0, 411, 3-15.	0.4	1
71	Removal of zinc oxide nanoparticles in aqueous environment using functionalized sorbents derived from sago waste. International Journal of Environmental Science and Technology, 0, , 1.	3.5	0