Xing-Jie Liang

List of Publications by Year in Descending Order

Source: https://exaly.com/author-pdf/4690392/xing-jie-liang-publications-by-year.pdf

Version: 2024-04-09

This document has been generated based on the publications and citations recorded by exaly.com. For the latest version of this publication list, visit the link given above.

The third column is the impact factor (IF) of the journal, and the fourth column is the number of citations of the article.

264	16,050	72	119
papers	citations	h-index	g-index
314	19,821 ext. citations	11.7	6.85
ext. papers		avg, IF	L-index

#	Paper	IF	Citations
264	Glutamine Antagonist Synergizes with Electrodynamic Therapy to Induce Tumor Regression and Systemic Antitumor Immunity <i>ACS Nano</i> , 2022 ,	16.7	8
263	Therapeutic exosomal vaccine for enhanced cancer immunotherapy by mediating tumor microenvironment <i>IScience</i> , 2022 , 25, 103639	6.1	0
262	Leveraging Macrophages for Cancer Theranostics Advanced Drug Delivery Reviews, 2022, 114136	18.5	2
261	Ionizable liposomal siRNA therapeutics enables potent and persistent treatment of Hepatitis B Signal Transduction and Targeted Therapy, 2022 , 7, 38	21	3
260	Nanomaterials with changeable physicochemical property for boosting cancer immunotherapy <i>Journal of Controlled Release</i> , 2022 , 342, 210-227	11.7	1
259	Ionizable lipid-assisted efficient hepatic delivery of gene editing elements for oncotherapy. <i>Bioactive Materials</i> , 2022 , 9, 590-601	16.7	12
258	Nanotechnology-based combinatorial phototherapy for enhanced cancer treatment <i>RSC Advances</i> , 2022 , 12, 9725-9737	3.7	1
257	Dual Drug Loaded pH-sensitive Micelles for Efficient Bacterial Infection Treatment <i>Pharmaceutical Research</i> , 2022 , 1	4.5	0
256	Thermostable ionizable lipid-like nanoparticle (iLAND) for RNAi treatment of hyperlipidemia <i>Science Advances</i> , 2022 , 8, eabm1418	14.3	4
255	Spatiotemporal Tracing of the Cellular Internalization Process of Rod-Shaped Nanostructures <i>ACS Nano</i> , 2022 ,	16.7	2
254	Fibrin Site-Specific Nanoprobe for Imaging Fibrin-Rich Thrombi and Preventing Thrombus Formation in Venous Vessels <i>Advanced Materials</i> , 2022 , e2109955	24	2
253	A CAR T-inspiring platform based on antibody-engineered exosomes from antigen-feeding dendritic cells for precise solid tumor therapy <i>Biomaterials</i> , 2022 , 282, 121424	15.6	1
252	Biomimetic Nanocarriers Guide Extracellular ATP Homeostasis to Remodel Energy Metabolism for Activating Innate and Adaptive Immunity System <i>Advanced Science</i> , 2022 , e2105376	13.6	3
251	mRNA vaccines for COVID-19 and diverse diseases <i>Journal of Controlled Release</i> , 2022 , 345, 314-333	11.7	9
250	A comparison of Remdesivir versus gold cluster in COVID-19 animal model: A better therapeutic outcome of gold cluster <i>Nano Today</i> , 2022 , 44, 101468	17.9	O
249	Blood-brain barrier-penetrating single CRISPR-Cas9 nanocapsules for effective and safe glioblastoma gene therapy <i>Science Advances</i> , 2022 , 8, eabm8011	14.3	5
248	Preparation and Evaluation of Rationally Designed Polymers for Efficient Endosomal Escape of siRNA. <i>Biomaterial Engineering</i> , 2022 , 181-197	0.3	

(2021-2022)

247	Preparation of Ultrasmall Gold Nanoparticles for Nuclear-Based Gene Delivery. <i>Biomaterial Engineering</i> , 2022 , 335-343	0.3		
246	Functionalized Macrophage Exosomes with Panobinostat and PPM1D-siRNA for Diffuse Intrinsic Pontine Gliomas Therapy <i>Advanced Science</i> , 2022 , e2200353	13.6	1	
245	Bioimaging guided pharmaceutical evaluations of nanomedicines for clinical translations <i>Journal of Nanobiotechnology</i> , 2022 , 20, 236	9.4	1	
244	Preparation and Evaluation of Rationally Designed Polymers for Efficient Endosomal Escape of siRNA. <i>Biomaterial Engineering</i> , 2021 , 1-17	0.3		
243	Enhanced anti-tumor activity of a drug through pH-triggered release and dual targeting by calcium phosphate-covered mesoporous silica vehicles <i>Journal of Materials Chemistry B</i> , 2021 ,	7.3	2	
242	Engineering a Photosynthetic Bacteria-incorporated Hydrogel for Infected Wound Healing <i>Acta Biomaterialia</i> , 2021 ,	10.8	4	
241	Preparation of Ultrasmall Gold Nanoparticles for Nuclear-Based Gene Delivery. <i>Biomaterial Engineering</i> , 2021 , 1-9	0.3		
240	Virus-inspired nanosystems for drug delivery. <i>Nanoscale</i> , 2021 , 13, 18912-18924	7.7	2	
239	Innovative nanochemotherapy for overcoming cancer multidrug resistance. <i>Nanotechnology</i> , 2021 , 33,	3.4	1	
238	Nano-herb medicine and PDT induced synergistic immunotherapy for colon cancer treatment. <i>Biomaterials</i> , 2021 , 269, 120654	15.6	23	
237	Temperature-Sensitive Lipid-Coated Carbon Nanotubes for Synergistic Photothermal Therapy and Gene Therapy. <i>ACS Nano</i> , 2021 , 15, 6517-6529	16.7	29	
236	Exploiting the acquired vulnerability of cisplatin-resistant tumors with a hypoxia-amplifying DNA repair-inhibiting (HYDRI) nanomedicine. <i>Science Advances</i> , 2021 , 7,	14.3	13	
235	Nanoscale Detection of Subcellular Nanoparticles by X-Ray Diffraction Imaging for Precise Quantitative Analysis of Whole Cancer Cells. <i>Analytical Chemistry</i> , 2021 , 93, 5201-5210	7.8	0	
234	X-ray-Based Techniques to Study the Nano-Bio Interface. <i>ACS Nano</i> , 2021 , 15, 3754-3807	16.7	18	
233	Effect of physicochemical properties on fate of nanoparticle-based cancer immunotherapies. <i>Acta Pharmaceutica Sinica B</i> , 2021 , 11, 886-902	15.5	8	
232	Pyroelectric Catalysis-Based "Nano-Lymphatic" Reduces Tumor Interstitial Pressure for Enhanced Penetration and Hydrodynamic Therapy. <i>ACS Nano</i> , 2021 , 15, 10488-10501	16.7	12	
231	A core-shell structured COVID-19 mRNA vaccine with favorable biodistribution pattern and promising immunity. <i>Signal Transduction and Targeted Therapy</i> , 2021 , 6, 213	21	29	
230	Electromagnetic Field-Programmed Magnetic Vortex Nanodelivery System for Efficacious Cancer Therapy. <i>Advanced Science</i> , 2021 , 8, e2100950	13.6	8	

229	Rolling microneedle electrode array (RoMEA) empowered nucleic acid delivery and cancer immunotherapy. <i>Nano Today</i> , 2021 , 36, 101017	17.9	12
228	Nanoscale drug delivery systems for controllable drug behaviors by multi-stage barrier penetration. <i>Journal of Controlled Release</i> , 2021 , 331, 282-295	11.7	16
227	Light-activatable liposomes for repetitive on-demand drug release and immunopotentiation in hypoxic tumor therapy. <i>Biomaterials</i> , 2021 , 265, 120456	15.6	64
226	Self-Propelled and Near-Infrared-Phototaxic Photosynthetic Bacteria as Photothermal Agents for Hypoxia-Targeted Cancer Therapy. <i>ACS Nano</i> , 2021 , 15, 1100-1110	16.7	15
225	Acid-sensitive PEGylated cabazitaxel prodrugs for antitumor therapy. <i>Chinese Chemical Letters</i> , 2021 , 32, 1751-1754	8.1	3
224	Structure transformable nanoparticles for photoacoustic imaging-guided photothermal ablation of tumors via enzyme-induced multistage delivery. <i>Chemical Engineering Journal</i> , 2021 , 421, 127747	14.7	2
223	Applications and regulatory of nanotechnology-based innovative in vitro diagnostics. <i>View</i> , 2021 , 2, 20	20 , 0091	3
222	Cyanobacteria-based near-infrared light-excited self-supplying oxygen system for enhanced photodynamic therapy of hypoxic tumors. <i>Nano Research</i> , 2021 , 14, 667-673	10	16
221	Recent progress in mitochondria-targeting-based nanotechnology for cancer treatment. <i>Nanoscale</i> , 2021 , 13, 7108-7118	7.7	14
220	Gold-based nanomaterials for the treatment of brain cancer. Cancer Biology and Medicine, 2021,	5.2	9
219	Intracellular aggregations of biological elements: From simple to complex. <i>Aggregate</i> , 2021 , 2, e27	22.9	О
218	Core Role of Hydrophobic Core of Polymeric Nanomicelle in Endosomal Escape of siRNA. <i>Nano Letters</i> , 2021 , 21, 3680-3689	11.5	20
217	Mannose-Derived Carbon Dots Amplify Microwave Ablation-Induced Antitumor Immune Responses by Capturing and Transferring "Danger Signals" to Dendritic Cells. <i>ACS Nano</i> , 2021 , 15, 2920-2932	16.7	15
216	Practicable Applications of Aggregation-Induced Emission with Biomedical Perspective. <i>Advanced Healthcare Materials</i> , 2021 , e2100945	10.1	3
215	An amphiphilic dendrimer as a light-activable immunological adjuvant for in situ cancer vaccination. <i>Nature Communications</i> , 2021 , 12, 4964	17.4	13
214	Photo-responsive hydrogel facilitates nutrition deprivation by an ambidextrous approach for preventing cancer recurrence and metastasis. <i>Biomaterials</i> , 2021 , 275, 120992	15.6	5
213	Dendrimeric nanosystem consistently circumvents heterogeneous drug response and resistance in pancreatic cancer. <i>Exploration</i> , 2021 , 1, 21-34		23
212	Receptor-targeting nanomaterials alleviate binge drinking-induced neurodegeneration as artificial neurotrophins. <i>Exploration</i> , 2021 , 1, 61-74		7

(2020-2021)

211	Membrane-destabilizing ionizable lipid empowered imaging-guided siRNA delivery and cancer treatment. <i>Exploration</i> , 2021 , 1, 35-49		31
210	From mouse to mouse-ear cress: Nanomaterials as vehicles in plant biotechnology. <i>Exploration</i> , 2021 , 1, 9-20		13
209	Modular ketal-linked prodrugs and biomaterials enabled by organocatalytic transisopropenylation of alcohols. <i>Nature Communications</i> , 2021 , 12, 5532	17.4	3
208	Magnetothermal regulation of in vivo protein corona formation on magnetic nanoparticles for improved cancer nanotherapy. <i>Biomaterials</i> , 2021 , 276, 121021	15.6	8
207	High-quality milk exosomes as oral drug delivery system. <i>Biomaterials</i> , 2021 , 277, 121126	15.6	7
206	Protein-Activatable Diarylethene Monomer as a Smart Trigger of Noninvasive Control Over Reversible Generation of Singlet Oxygen: A Facile, Switchable, Theranostic Strategy for Photodynamic-Immunotherapy. <i>Journal of the American Chemical Society</i> , 2021 , 143, 2413-2422	16.4	37
205	Engineering Supramolecular Nanomedicine for Targeted Near Infrared-triggered Mitochondrial Dysfunction to Potentiate Cisplatin for Efficient Chemophototherapy <i>ACS Nano</i> , 2021 ,	16.7	5
204	Adaptive changes induced by noble-metal nanostructures and. <i>Theranostics</i> , 2020 , 10, 5649-5670	12.1	8
203	Multifunctional DNA Polymer-Assisted Upconversion Therapeutic Nanoplatform for Enhanced Photodynamic Therapy. <i>ACS Applied Materials & Description of the State o</i>	9.5	16
202	Therapeutic siRNA: state of the art. Signal Transduction and Targeted Therapy, 2020 , 5, 101	21	243
201	Dually Enzyme- and Acid-Triggered Self-Immolative Ketal Glycoside Nanoparticles for Effective Cancer Prodrug Monotherapy. <i>Nano Letters</i> , 2020 , 20, 5465-5472	11.5	20
200	Superhydrophilic fluorinated polymer and nanogel for high-performance F magnetic resonance imaging. <i>Biomaterials</i> , 2020 , 256, 120184	15.6	10
199	Modular Acid-Activatable Acetone-Based Ketal-Linked Nanomedicine by Dexamethasone Prodrugs	11.5	33
	for Enhanced Anti-Rheumatoid Arthritis with Low Side Effects. <i>Nano Letters</i> , 2020 , 20, 2558-2568		
198	A nano-based thermotherapy for cancer stem cell-targeted therapy. <i>Journal of Materials Chemistry</i>	7.3	12
198 197	A nano-based thermotherapy for cancer stem cell-targeted therapy. <i>Journal of Materials Chemistry B</i> , 2020 , 8, 3985-4001 Comprehensive understanding of magnetic hyperthermia for improving antitumor therapeutic		12
	A nano-based thermotherapy for cancer stem cell-targeted therapy. <i>Journal of Materials Chemistry B</i> , 2020 , 8, 3985-4001 Comprehensive understanding of magnetic hyperthermia for improving antitumor therapeutic	7.3	
197	A nano-based thermotherapy for cancer stem cell-targeted therapy. <i>Journal of Materials Chemistry B</i> , 2020 , 8, 3985-4001 Comprehensive understanding of magnetic hyperthermia for improving antitumor therapeutic efficacy. <i>Theranostics</i> , 2020 , 10, 3793-3815 Targeting colorectal cancer via nanodrug delivery systems 2020 , 199-212 Prodrug-Based Nanoreactors with Tumor-Specific Activation for Multisynergistic Cancer Therapy.	7.3	
197 196	A nano-based thermotherapy for cancer stem cell-targeted therapy. <i>Journal of Materials Chemistry B</i> , 2020 , 8, 3985-4001 Comprehensive understanding of magnetic hyperthermia for improving antitumor therapeutic efficacy. <i>Theranostics</i> , 2020 , 10, 3793-3815 Targeting colorectal cancer via nanodrug delivery systems 2020 , 199-212 Prodrug-Based Nanoreactors with Tumor-Specific Activation for Multisynergistic Cancer Therapy.	7-3	157

193	ICG-Conjugated and I-Labeled Polymeric Micelles with High Biosafety for Multimodality Imaging-Guided Photothermal Therapy of Tumors. <i>Advanced Healthcare Materials</i> , 2020 , 9, e1901616	10.1	33
192	Graphene Oxide-Grafted Magnetic Nanorings Mediated Magnetothermodynamic Therapy Favoring Reactive Oxygen Species-Related Immune Response for Enhanced Antitumor Efficacy. <i>ACS Nano</i> , 2020 , 14, 1936-1950	16.7	72
191	Metal-Based Nanocatalyst for Combined Cancer Therapeutics. <i>Bioconjugate Chemistry</i> , 2020 , 31, 1247-1	25\$	20
190	Biomimetic carbon nanotubes for neurological disease therapeutics as inherent medication. <i>Acta Pharmaceutica Sinica B</i> , 2020 , 10, 239-248	15.5	31
189	Improved Nucleic Acid Therapy with Advanced Nanoscale Biotechnology. <i>Molecular Therapy - Nucleic Acids</i> , 2020 , 19, 581-601	10.7	41
188	Smart calcium peroxide with self-sufficience for biomedicine. Science China Life Sciences, 2020, 63, 152-	18 <u>.</u>	4
187	Co-localized delivery of nanomedicine and nanovaccine augments the postoperative cancer immunotherapy by amplifying T-cell responses. <i>Biomaterials</i> , 2020 , 230, 119649	15.6	61
186	Metal-organic framework-based nanocatalytic medicine for chemodynamic therapy. <i>Science China Materials</i> , 2020 , 63, 2429-2434	7.1	8
185	Artificial Nanotargeted Cells with Stable Photothermal Performance for Multimodal Imaging-Guided Tumor-Specific Therapy. <i>ACS Nano</i> , 2020 , 14, 12652-12667	16.7	30
184	Near-Infrared Light Irradiation Induced Mild Hyperthermia Enhances Glutathione Depletion and DNA Interstrand Cross-Link Formation for Efficient Chemotherapy. <i>ACS Nano</i> , 2020 , 14, 14831-14845	16.7	40
183	Efficient hepatic delivery and protein expression enabled by optimized mRNA and ionizable lipid nanoparticle. <i>Bioactive Materials</i> , 2020 , 5, 1053-1061	16.7	24
182	Proton-driven transformable nanovaccine for cancer immunotherapy. <i>Nature Nanotechnology</i> , 2020 , 15, 1053-1064	28.7	83
181	Fighting against Drug-Resistant Tumors using a Dual-Responsive Pt(IV)/Ru(II) Bimetallic Polymer. <i>Advanced Materials</i> , 2020 , 32, e2004766	24	46
180	Real-Time Pharmaceutical Evaluations of Near-Infrared II Fluorescent Nanomedicine Bound Polyethylene Glycol Ligands for Tumor Photothermal Ablation. <i>ACS Nano</i> , 2020 , 14, 13681-13690	16.7	19
179	Polymer-Based Nanomaterials for Noninvasive Cancer Photothermal Therapy. <i>ACS Applied Polymer Materials</i> , 2020 , 2, 4289-4305	4.3	16
178	Near-Infrared-Absorbing Conjugated Polymer Nanoparticles Loaded with Doxorubicin for Combinatorial Photothermal-Chemotherapy of Cancer. <i>ACS Applied Polymer Materials</i> , 2020 , 2, 4180-41	8 1 7 ³	5
177	Ultrasmall gold nanoparticles in cancer diagnosis and therapy. <i>Theranostics</i> , 2020 , 10, 4944-4957	12.1	61
176	Engineered nanoparticles circumvent the adaptive treatment tolerance to immune-checkpoint blockade therapy. <i>Science China Chemistry</i> , 2019 , 62, 1557-1560	7.9	5

175	Targeted nanoparticles for precise cancer therapy. Science China Life Sciences, 2019, 62, 1392-1395	8.5	7
174	Gold-DNA nanosunflowers for efficient gene silencing with controllable transformation. <i>Science Advances</i> , 2019 , 5, eaaw6264	14.3	61
173	Thermo-responsive triple-function nanotransporter for efficient chemo-photothermal therapy of multidrug-resistant bacterial infection. <i>Nature Communications</i> , 2019 , 10, 4336	17.4	128
172	Natural Berberine-Based Chinese Herb Medicine Assembled Nanostructures with Modified Antibacterial Application. <i>ACS Nano</i> , 2019 , 13, 6770-6781	16.7	115
171	Optimization and Design of Magnetic Ferrite Nanoparticles with Uniform Tumor Distribution for Highly Sensitive MRI/MPI Performance and Improved Magnetic Hyperthermia Therapy. <i>Nano Letters</i> , 2019 , 19, 3618-3626	11.5	103
170	Clinical advances of siRNA therapeutics. <i>Journal of Gene Medicine</i> , 2019 , 21, e3097	3.5	78
169	Cancer Radiotherapy: Enhanced Radiosensitization by Gold Nanoparticles with Acid-Triggered Aggregation in Cancer Radiotherapy (Adv. Sci. 8/2019). <i>Advanced Science</i> , 2019 , 6, 1970050	13.6	О
168	RNAi therapeutic and its innovative biotechnological evolution. <i>Biotechnology Advances</i> , 2019 , 37, 801-8	8 25 .8	115
167	Secreted Protein Acidic and Rich in Cysteine Mediated Biomimetic Delivery of Methotrexate by Albumin-Based Nanomedicines for Rheumatoid Arthritis Therapy. <i>ACS Nano</i> , 2019 , 13, 5036-5048	16.7	60
166	Co-encapsulation of curcumin and doxorubicin in albumin nanoparticles blocks the adaptive treatment tolerance of cancer cells. <i>Biophysics Reports</i> , 2019 , 5, 19-30	3.5	37
165	Glucose-functionalized near-infrared AgSe quantum dots with renal excretion ability for long-term in vivo tumor imaging. <i>Journal of Materials Chemistry B</i> , 2019 , 7, 5782-5788	7.3	12
164	Fe3O4 P d Janus nanoparticles with amplified dual-mode hyperthermia and enhanced ROS generation for breast cancer treatment. <i>Nanoscale Horizons</i> , 2019 , 4, 1450-1459	10.8	66
163	Magnetic Reactive Oxygen Species Nanoreactor for Switchable Magnetic Resonance Imaging Guided Cancer Therapy Based on pH-Sensitive FeC@FeO Nanoparticles. <i>ACS Nano</i> , 2019 , 13, 10002-100	1 ¹ 6.7	82
162	Ferrimagnetic Vortex Nanoring-Mediated Mild Magnetic Hyperthermia Imparts Potent Immunological Effect for Treating Cancer Metastasis. <i>ACS Nano</i> , 2019 , 13, 8811-8825	16.7	93
161	Bone-Targeted Nanoplatform Combining Zoledronate and Photothermal Therapy To Treat Breast Cancer Bone Metastasis. <i>ACS Nano</i> , 2019 , 13, 7556-7567	16.7	81
160	Nanoscale Metal-Organic Framework Mediates Radical Therapy to Enhance Cancer Immunotherapy. <i>CheM</i> , 2019 , 5, 1892-1913	16.2	127
159	Self-Supply of O and HO by a Nanocatalytic Medicine to Enhance Combined Chemo/Chemodynamic Therapy. <i>Advanced Science</i> , 2019 , 6, 1902137	13.6	133
158	Biodegradable EConjugated Oligomer Nanoparticles with High Photothermal Conversion Efficiency for Cancer Theranostics. <i>ACS Nano</i> , 2019 , 13, 12901-12911	16.7	104

157	Carbon-dot-supported atomically dispersed gold as a mitochondrial oxidative stress amplifier for cancer treatment. <i>Nature Nanotechnology</i> , 2019 , 14, 379-387	28.7	267
156	Evaluation of Turning-Sized Gold Nanoparticles on Cellular Adhesion by Golgi Disruption and. <i>Nano Letters</i> , 2019 , 19, 8476-8487	11.5	9
155	Move to Nano-Arthrology: Targeted Stimuli-Responsive Nanomedicines Combat Adaptive Treatment Tolerance (ATT) of Rheumatoid Arthritis. <i>Biotechnology Journal</i> , 2019 , 14, e1800024	5.6	8
154	Regulation of Ca Signaling for Drug-Resistant Breast Cancer Therapy with Mesoporous Silica Nanocapsule Encapsulated Doxorubicin/siRNA Cocktail. <i>ACS Nano</i> , 2019 , 13, 274-283	16.7	81
153	Near-infrared AIEgens as transformers to enhance tumor treatment efficacy with controllable self-assembled redox-responsive carrier-free nanodrug. <i>Biomaterials</i> , 2019 , 193, 12-21	15.6	51
152	Core-Satellite Nanomedicines for in Vivo Real-Time Monitoring of Enzyme-Activatable Drug Release by Fluorescence and Photoacoustic Dual-Modal Imaging. <i>ACS Nano</i> , 2019 , 13, 176-186	16.7	54
151	YO Nanoparticles Caused Bone Tissue Damage by Breaking the Intracellular Phosphate Balance in Bone Marrow Stromal Cells. <i>ACS Nano</i> , 2019 , 13, 313-323	16.7	84
150	Functional Nanomaterials Optimized to Circumvent Tumor Immunological Tolerance. <i>Advanced Functional Materials</i> , 2019 , 29, 1806087	15.6	14
149	Enhanced Radiosensitization by Gold Nanoparticles with Acid-Triggered Aggregation in Cancer Radiotherapy. <i>Advanced Science</i> , 2019 , 6, 1801806	13.6	56
148	Bioreducible Zinc(II)-Dipicolylamine Functionalized Hyaluronic Acid Mediates Safe siRNA Delivery and Effective Glioblastoma RNAi Therapy <i>ACS Applied Bio Materials</i> , 2019 , 2, 362-369	4.1	7
147	Antisense Oligonucleotide-Conjugated Nanostructure-Targeting lncRNA MALAT1 Inhibits Cancer Metastasis. <i>ACS Applied Materials & Acs Applied Materials & Acc Applied & Ac</i>	9.5	66
146	Magnetic Nanomaterials for Advanced Regenerative Medicine: The Promise and Challenges. <i>Advanced Materials</i> , 2019 , 31, e1804922	24	26
145	Aggregation-induced emission (AIE) fluorophores as imaging tools to trace the biological fate of nano-based drug delivery systems. <i>Advanced Drug Delivery Reviews</i> , 2019 , 143, 161-176	18.5	54
144	Light-Triggered Retention and Cascaded Therapy of Albumin-Based Theranostic Nanomedicines to Alleviate Tumor Adaptive Treatment Tolerance. <i>Advanced Functional Materials</i> , 2018 , 28, 1707291	15.6	51
143	A Carrier-Free Nanostructure Based on Platinum(IV) Prodrug Enhances Cellular Uptake and Cytotoxicity. <i>Molecular Pharmaceutics</i> , 2018 , 15, 1724-1728	5.6	21
142	Ultrasensitive Tyrosinase-Activated Turn-On Near-Infrared Fluorescent Probe with a Rationally Designed Urea Bond for Selective Imaging and Photodamage to Melanoma Cells. <i>Analytical Chemistry</i> , 2018 , 90, 3666-3669	7.8	44
141	Perfluorocarbon-based nanomedicine: emerging strategy for diagnosis and treatment of diseases. MRS Communications, 2018 , 8, 303-313	2.7	11
140	LAL test and RPT for endotoxin detection of CPT-11/DSPE-mPEG nanoformulation: What if traditional methods are not applicable?. <i>Asian Journal of Pharmaceutical Sciences</i> , 2018 , 13, 289-296	9	6

139	Nanomaterial-assisted sensitization of oncotherapy. Nano Research, 2018, 11, 2932-2950	10	16
138	Magnetic resonance imaging quantification and biodistribution of magnetic nanoparticles using T-enhanced contrast. <i>Journal of Materials Chemistry B</i> , 2018 , 6, 1470-1478	7.3	4
137	Dual Drug Backboned Shattering Polymeric Theranostic Nanomedicine for Synergistic Eradication of Patient-Derived Lung Cancer. <i>Advanced Materials</i> , 2018 , 30, 1706220	24	95
136	Gold nanoparticles cause size-dependent inhibition of embryonic development during murine pregnancy. <i>Nano Research</i> , 2018 , 11, 3419-3433	10	10
135	Multiwalled Carbon Nanotubes Induced Hypotension by Regulating the Central Nervous System. <i>Advanced Functional Materials</i> , 2018 , 28, 1705479	15.6	10
134	Renal-clearable quaternary chalcogenide nanocrystal for photoacoustic/magnetic resonance imaging guided tumor photothermal therapy. <i>Biomaterials</i> , 2018 , 159, 108-118	15.6	33
133	Stable and oxidant responsive zwitterionic nanoclusters. <i>Nanoscale</i> , 2018 , 10, 7382-7386	7.7	9
132	AMF responsive DOX-loaded magnetic microspheres: transmembrane drug release mechanism and multimodality postsurgical treatment of breast cancer. <i>Journal of Materials Chemistry B</i> , 2018 , 6, 2289-7	2303	46
131	Precise theranostic nanomedicines for inhibiting vulnerable atherosclerotic plaque progression through regulation of vascular smooth muscle cell phenotype switching. <i>Theranostics</i> , 2018 , 8, 3693-37	0 ^{12.1}	29
130	Improved pharmaceutical research and development with AIE-based nanostructures. <i>Materials Horizons</i> , 2018 , 5, 799-812	14.4	20
129	Biocompatible semiconducting polymer nanoparticles as robust photoacoustic and photothermal agents revealing the effects of chemical structure on high photothermal conversion efficiency. <i>Biomaterials</i> , 2018 , 181, 92-102	15.6	55
128	Red-Light-Controlled Release of Drug R u Complex Conjugates from Metallopolymer Micelles for Phototherapy in Hypoxic Tumor Environments. <i>Advanced Functional Materials</i> , 2018 , 28, 1804227	15.6	56
127	Magnetic field and nano-scaffolds with stem cells to enhance bone regeneration. <i>Biomaterials</i> , 2018 , 183, 151-170	15.6	117
126	Nrp-1 receptor targeting peptide-functionalized TPGS micellar nanosystems to deliver 10-hydroxycampothecin for enhanced cancer chemotherapy. <i>International Journal of Pharmaceutics</i> , 2018 , 547, 582-592	6.5	10
125	Biomimetic O-Evolving metal-organic framework nanoplatform for highly efficient photodynamic therapy against hypoxic tumor. <i>Biomaterials</i> , 2018 , 178, 83-94	15.6	109
124	Tailoring Platinum(IV) Amphiphiles for Self-Targeting All-in-One Assemblies as Precise Multimodal Theranostic Nanomedicine. <i>ACS Nano</i> , 2018 , 12, 7272-7281	16.7	80
123	Nanomicelle-Assisted Targeted Ocular Delivery with Enhanced Antiinflammatory Efficacy In Vivo. <i>Advanced Science</i> , 2018 , 5, 1700455	13.6	27
122	Laser-Induced Transformable BiS@HSA/DTX Multiple Nanorods for Photoacoustic/Computed Tomography Dual-Modal Imaging Guided Photothermal/Chemo Combinatorial Anticancer Therapy. <i>ACS Applied Materials & Discourse (Materials & Discourse)</i> 10, 41167-41177	9.5	12

121	Fluorinated Oligoethylenimine Nanoassemblies for Efficient siRNA-Mediated Gene Silencing in Serum-Containing Media by Effective Endosomal Escape. <i>Nano Letters</i> , 2018 , 18, 6301-6311	11.5	43
120	Virus-Inspired Self-Assembled Nanofibers with Aggregation-Induced Emission for Highly Efficient and Visible Gene Delivery. <i>ACS Applied Materials & Amp; Interfaces</i> , 2017 , 9, 4425-4432	9.5	33
119	A traceable and bone-targeted nanoassembly based on defect-related luminescent mesoporous silica for enhanced osteogenic differentiation. <i>Journal of Materials Chemistry B</i> , 2017 , 5, 1585-1593	7.3	19
118	pH-sensitive polymeric micelles for the Co-delivery of proapoptotic peptide and anticancer drug for synergistic cancer therapy. <i>RSC Advances</i> , 2017 , 7, 12886-12896	3.7	29
117	Drug Therapy: An Amphiphilic Ruthenium Polymetallodrug for Combined Photodynamic Therapy and Photochemotherapy In Vivo (Adv. Mater. 6/2017). <i>Advanced Materials</i> , 2017 , 29,	24	1
116	Nanoscience and Nanotechnology Cross Borders. <i>ACS Nano</i> , 2017 , 11, 1123-1126	16.7	3
115	ICAM-1-Targeted Liposomes Loaded with Liver X Receptor Agonists Suppress PDGF-Induced Proliferation of Vascular Smooth Muscle Cells. <i>Nanoscale Research Letters</i> , 2017 , 12, 322	5	6
114	P-gp Inhibition and Mitochondrial Impairment by Dual-Functional Nanostructure Based on Vitamin E Derivatives To Overcome Multidrug Resistance. <i>ACS Applied Materials & Designation of Communication (Natural Materials & Designation of Communication)</i> 1696	00 ⁹ 1&91	1248
113	Transferrin-Dressed Virus-like Ternary Nanoparticles with Aggregation-Induced Emission for Targeted Delivery and Rapid Cytosolic Release of siRNA. <i>ACS Applied Materials & amp; Interfaces</i> , 2017 , 9, 16006-16014	9.5	19
112	An Amphiphilic Ruthenium Polymetallodrug for Combined Photodynamic Therapy and		161
	Photochemotherapy In Vivo. <i>Advanced Materials</i> , 2017 , 29, 1603702	24	101
111	Spatiotemporally Controllable Peptide-Based Nanoassembly in Single Living Cells for a Biological Self-Portrait. <i>Advanced Materials</i> , 2017 , 29, 1601128	24	14
111	Spatiotemporally Controllable Peptide-Based Nanoassembly in Single Living Cells for a Biological	<u> </u>	14
	Spatiotemporally Controllable Peptide-Based Nanoassembly in Single Living Cells for a Biological Self-Portrait. <i>Advanced Materials</i> , 2017 , 29, 1601128 Colloidal Gold Nanoparticles Induce Changes in Cellular and Subcellular Morphology. <i>ACS Nano</i> ,	24	14
110	Spatiotemporally Controllable Peptide-Based Nanoassembly in Single Living Cells for a Biological Self-Portrait. <i>Advanced Materials</i> , 2017 , 29, 1601128 Colloidal Gold Nanoparticles Induce Changes in Cellular and Subcellular Morphology. <i>ACS Nano</i> , 2017 , 11, 7807-7820 Biodegradable, multifunctional DNAzyme nanoflowers for enhanced cancer therapy. <i>NPG Asia</i>	24 16.7	14 60 49
110	Spatiotemporally Controllable Peptide-Based Nanoassembly in Single Living Cells for a Biological Self-Portrait. <i>Advanced Materials</i> , 2017 , 29, 1601128 Colloidal Gold Nanoparticles Induce Changes in Cellular and Subcellular Morphology. <i>ACS Nano</i> , 2017 , 11, 7807-7820 Biodegradable, multifunctional DNAzyme nanoflowers for enhanced cancer therapy. <i>NPG Asia Materials</i> , 2017 , 9, e365-e365	16.7 10.3	14 60 49
109	Spatiotemporally Controllable Peptide-Based Nanoassembly in Single Living Cells for a Biological Self-Portrait. <i>Advanced Materials</i> , 2017 , 29, 1601128 Colloidal Gold Nanoparticles Induce Changes in Cellular and Subcellular Morphology. <i>ACS Nano</i> , 2017 , 11, 7807-7820 Biodegradable, multifunctional DNAzyme nanoflowers for enhanced cancer therapy. <i>NPG Asia Materials</i> , 2017 , 9, e365-e365 Diverse Applications of Nanomedicine. <i>ACS Nano</i> , 2017 , 11, 2313-2381 Terrylenediimide-Based Intrinsic Theranostic Nanomedicines with High Photothermal Conversion	16.7 10.3	14 60 49 714
110 109 108	Spatiotemporally Controllable Peptide-Based Nanoassembly in Single Living Cells for a Biological Self-Portrait. <i>Advanced Materials</i> , 2017 , 29, 1601128 Colloidal Gold Nanoparticles Induce Changes in Cellular and Subcellular Morphology. <i>ACS Nano</i> , 2017 , 11, 7807-7820 Biodegradable, multifunctional DNAzyme nanoflowers for enhanced cancer therapy. <i>NPG Asia Materials</i> , 2017 , 9, e365-e365 Diverse Applications of Nanomedicine. <i>ACS Nano</i> , 2017 , 11, 2313-2381 Terrylenediimide-Based Intrinsic Theranostic Nanomedicines with High Photothermal Conversion Efficiency for Photoacoustic Imaging-Guided Cancer Therapy. <i>ACS Nano</i> , 2017 , 11, 3797-3805	16.7 10.3 16.7	14 60 49 714 192

(2016-2017)

103	Metal-carbenicillin framework-based nanoantibiotics with enhanced penetration and highly efficient inhibition of MRSA. <i>Biomaterials</i> , 2017 , 144, 155-165	15.6	44
102	Graphene oxide-iron oxide nanocomposite as an inhibitor of AII42 amyloid peptide aggregation. <i>Colloids and Surfaces B: Biointerfaces</i> , 2017 , 159, 540-545	6	12
101	Poly(vinyl methyl ether/maleic anhydride)-Doped PEG-PLA Nanoparticles for Oral Paclitaxel Delivery To Improve Bioadhesive Efficiency. <i>Molecular Pharmaceutics</i> , 2017 , 14, 3598-3608	5.6	23
100	Carrier-free, self-assembled pure drug nanorods composed of 10-hydroxycamptothecin and chlorin e6 for combinatorial chemo-photodynamic antitumor therapy in vivo. <i>Nanoscale</i> , 2017 , 9, 14347-14356	7.7	82
99	Overcoming resistance to cisplatin by inhibition of glutathione S-transferases (GSTs) with ethacraplatin micelles in vitro and in vivo. <i>Biomaterials</i> , 2017 , 144, 119-129	15.6	60
98	A Distinct Endocytic Mechanism of Functionalized-Silica Nanoparticles in Breast Cancer Stem Cells. <i>Scientific Reports</i> , 2017 , 7, 16236	4.9	16
97	Through-Bond Energy Transfer Cassette with Dual-Stokes Shifts for "Double Checked" Cell Imaging. <i>Advanced Science</i> , 2017 , 4, 1700229	13.6	18
96	Apoptosis induced by NaYF4:Eu3+ nanoparticles in liver cells via mitochondria damage dependent pathway. <i>Science China Chemistry</i> , 2017 , 60, 122-129	7.9	9
95	Ultrasmall Gold Nanoparticles Behavior in Vivo Modulated by Surface Polyethylene Glycol (PEG) Grafting. <i>Bioconjugate Chemistry</i> , 2017 , 28, 239-243	6.3	19
94	Nanotechnology-based strategies for treatment of ocular disease. <i>Acta Pharmaceutica Sinica B</i> , 2017 , 7, 281-291	15.5	177
93	A tyrosinase-triggered oxidative reaction-based II urn-on II luorescent probe for imaging in living melanoma cells. <i>Sensors and Actuators B: Chemical</i> , 2017 , 242, 189-194	8.5	24
92	Periodic microstructures of blood capillaries revealed by synchrotron X-ray multi-resolution microscopic analysis. <i>Biomedical Optics Express</i> , 2017 , 8, 5825-5833	3.5	1
91	Reverse Fluorescence Enhancement and Colorimetric Bimodal Signal Readout Immunochromatography Test Strip for Ultrasensitive Large-Scale Screening and Postoperative Monitoring. <i>ACS Applied Materials & Discourse (Materials & Materials </i>	9.5	38
90	Fully Zwitterionic Nanoparticle Antimicrobial Agents through Tuning of Core Size and Ligand Structure. <i>ACS Nano</i> , 2016 , 10, 8732-7	16.7	87
89	Near-Infrared Emission CuInS/ZnS Quantum Dots: All-in-One Theranostic Nanomedicines with Intrinsic Fluorescence/Photoacoustic Imaging for Tumor Phototherapy. <i>ACS Nano</i> , 2016 , 10, 9637-9645	16.7	179
88	Self-assembling nanowires of an amphiphilic camptothecin prodrug derived from homologous derivative conjugation. <i>Chemical Communications</i> , 2016 , 52, 14145-14148	5.8	31
87	Near-Infrared (NIR)-Absorbing Conjugated Polymer Dots as Highly Effective Photothermal Materials for In Vivo Cancer Therapy. <i>Chemistry of Materials</i> , 2016 , 28, 8669-8675	9.6	169
86	A magnetic gene delivery nanosystem based on cationic liposomes. <i>Journal of Materials Science</i> , 2016 , 51, 8461-8470	4.3	7

85	Systemic and tumor-targeted delivery of siRNA by cyclic NGR and isoDGR motif-containing peptides. <i>Biomaterials Science</i> , 2016 , 4, 494-510	7.4	19
84	Subcellular Behaviour Evaluation of Nanopharmaceuticals with Aggregation-Induced Emission Molecules. <i>Journal of Materials Chemistry C</i> , 2016 , 4, 2719-2730	7.1	11
83	Quercetin-loaded nanomicelles to circumvent human castration-resistant prostate cancer in vitro and in vivo. <i>Nanoscale</i> , 2016 , 8, 5126-38	7.7	44
82	The Promising Nanocarrier for Doxorubicin and siRNA Co-delivery by PDMAEMA-based Amphiphilic Nanomicelles. <i>ACS Applied Materials & Samp; Interfaces</i> , 2016 , 8, 4347-56	9.5	65
81	Aggregated single-walled carbon nanotubes attenuate the behavioural and neurochemical effects of methamphetamine in mice. <i>Nature Nanotechnology</i> , 2016 , 11, 613-20	28.7	38
80	A Photosensitizer-Loaded DNA Origami Nanosystem for Photodynamic Therapy. <i>ACS Nano</i> , 2016 , 10, 3486-95	16.7	122
79	Inorganic Nanomaterials as Carriers for Drug Delivery. <i>Journal of Biomedical Nanotechnology</i> , 2016 , 12, 1-27	4	85
78	Progress and perspective of inorganic nanoparticle-based siRNA delivery systems. <i>Expert Opinion on Drug Delivery</i> , 2016 , 13, 547-59	8	55
77	Aggregation-Induced Emission: Aggregation-Induced Emission: Lighting up Cells, Revealing Life! (Small 47/2016). <i>Small</i> , 2016 , 12, 6634-6634	11	2
76	Co-Delivery of Cisplatin Prodrug and Chlorin e6 by Mesoporous Silica Nanoparticles for Chemo-Photodynamic Combination Therapy to Combat Drug Resistance. <i>ACS Applied Materials & Amp; Interfaces</i> , 2016 , 8, 13332-40	9.5	142
75	Tunable self-assembly of Irinotecan-fatty acid prodrugs with increased cytotoxicity to cancer cells. Journal of Materials Chemistry B, 2016 , 4, 3286-3291	7.3	39
74	"Sheddable" PEG-lipid to balance the contradiction of PEGylation between long circulation and poor uptake. <i>Nanoscale</i> , 2016 , 8, 10832-42	7.7	47
73	Future of nanotherapeutics: Targeting the cellular sub-organelles. <i>Biomaterials</i> , 2016 , 97, 10-21	15.6	117
72	Defect-Related Luminescent Hydroxyapatite-Enhanced Osteogenic Differentiation of Bone Mesenchymal Stem Cells Via an ATP-Induced cAMP/PKA Pathway. <i>ACS Applied Materials & Interfaces</i> , 2016 , 8, 11262-71	9.5	34
71	One-step gene delivery into the cytoplasm in a fusion-dependent manner based on a new membrane fusogenic lipid. <i>Chemical Communications</i> , 2016 , 52, 7406-8	5.8	8
70	Aggregation-Induced Emission: Lighting up Cells, Revealing Life!. Small, 2016, 12, 6451-6477	11	95
69	In vivo tumor-targeted dual-modal fluorescence/CT imaging using a nanoprobe co-loaded with an aggregation-induced emission dye and gold nanoparticles. <i>Biomaterials</i> , 2015 , 42, 103-11	15.6	138
68	Anticancer drug nanomicelles formed by self-assembling amphiphilic dendrimer to combat cancer drug resistance. <i>Proceedings of the National Academy of Sciences of the United States of America</i> , 2015 , 112, 2978-83	11.5	274

(2014-2015)

67	Self-carried curcumin nanoparticles for in vitro and in vivo cancer therapy with real-time monitoring of drug release. <i>Nanoscale</i> , 2015 , 7, 13503-10	7.7	108
66	Engineered biomaterials for development of nucleic acid vaccines. <i>Biomaterials Research</i> , 2015 , 19, 5	16.8	9
65	Modified bovine serum albumin as an effective charge-reversal platform for simultaneously improving the transfection efficiency and biocompatibility of polyplexes. <i>Journal of Materials Chemistry B</i> , 2015 , 3, 4698-4706	7.3	20
64	Defect-related luminescent mesoporous silica nanoparticles employed for novel detectable nanocarrier. <i>ACS Applied Materials & amp; Interfaces</i> , 2015 , 7, 10905-14	9.5	27
63	Anchoring Effects of Surface Chemistry on Gold Nanorods: Modulates Autophagy. <i>Journal of Materials Chemistry B</i> , 2015 , 3, 3324-3330	7-3	18
62	The Interplay of Size and Surface Functionality on the Cellular Uptake of Sub-10 nm Gold Nanoparticles. <i>ACS Nano</i> , 2015 , 9, 9986-93	16.7	250
61	Nanodrug Formed by Coassembly of Dual Anticancer Drugs to Inhibit Cancer Cell Drug Resistance. <i>ACS Applied Materials & Drug Resistance</i> , 2015 , 7, 19295-305	9.5	89
60	Hybrid Mesoporous Silica-Based Drug Carrier Nanostructures with Improved Degradability by Hydroxyapatite. <i>ACS Nano</i> , 2015 , 9, 9614-25	16.7	151
59	Polycations with excellent gene transfection ability based on PVP-g-PDMAEMA with random coil and micelle structures as non-viral gene vectors. <i>Journal of Materials Chemistry B</i> , 2015 , 3, 911-918	7.3	22
58	Systemic Administration of siRNA via cRGD-containing Peptide. Scientific Reports, 2015, 5, 12458	4.9	23
57	Synergistically Enhanced Therapeutic Effect of a Carrier-Free HCPT/DOX Nanodrug on Breast Cancer Cells through Improved Cellular Drug Accumulation. <i>Molecular Pharmaceutics</i> , 2015 , 12, 2237-44	5.6	59
56	Effects of the physicochemical properties of gold nanostructures on cellular internalization. <i>International Journal of Energy Production and Management</i> , 2015 , 2, 273-80	5.3	35
55	Phenylboronic acid-functionalized magnetic nanoparticles for one-step saccharides enrichment and mass spectrometry analysis. <i>Biophysics Reports</i> , 2015 , 1, 61-70	3.5	9
54	Probe-inspired nano-prodrug with dual-color fluorogenic property reveals spatiotemporal drug release in living cells. <i>ACS Nano</i> , 2015 , 9, 2729-39	16.7	78
53	Enhanced endosomal/lysosomal escape by distearoyl phosphoethanolamine-polycarboxybetaine lipid for systemic delivery of siRNA. <i>Journal of Controlled Release</i> , 2014 , 176, 104-14	11.7	86
52	Ultrasmall gold nanoparticles as carriers for nucleus-based gene therapy due to size-dependent nuclear entry. <i>ACS Nano</i> , 2014 , 8, 5852-62	16.7	252
51	pH-sensitive nano-systems for drug delivery in cancer therapy. <i>Biotechnology Advances</i> , 2014 , 32, 693-7	1 0 7.8	739
50	Seedless synthesis of high aspect ratio gold nanorods with high yield. <i>Journal of Materials Chemistry A</i> , 2014 , 2, 3528	13	62

49	The effects of nanoparticle shape on electrical conductivity of Ag nanomaterials. <i>Journal of Materials Science: Materials in Electronics</i> , 2014 , 25, 3870-3877	2.1	2
48	Highly Sensitive Simultaneous Detection of Mercury and Copper Ions by Ultrasmall Fluorescent DNA-Ag Nanoclusters. <i>New Journal of Chemistry</i> , 2014 , 38, 1546-1550	3.6	30
47	Spatiotemporal drug release visualized through a drug delivery system with tunable aggregation-induced emission. <i>Advanced Materials</i> , 2014 , 26, 712-7	24	164
46	A reticuloendothelial system-stealthy dyellbumin nanocomplex as a highly biocompatible and highly luminescent nanoprobe for targeted in vivo tumor imaging. <i>RSC Advances</i> , 2014 , 4, 6120	3.7	14
45	Imaging intracellular anticancer drug delivery by self-assembly micelles with aggregation-induced emission (AIE micelles). <i>ACS Applied Materials & Description (AIE micelles)</i> . <i>ACS Applied Materials & Description (AIE micelles)</i> .	9.5	131
44	Single-walled carbon nanotubes alleviate autophagic/lysosomal defects in primary glia from a mouse model of Alzheimer's disease. <i>Nano Letters</i> , 2014 , 14, 5110-7	11.5	89
43	Neuropilin-1-targeted gold nanoparticles enhance therapeutic efficacy of platinum(IV) drug for prostate cancer treatment. <i>ACS Nano</i> , 2014 , 8, 4205-20	16.7	118
42	Structure-dependent mitochondrial dysfunction and hypoxia induced with single-walled carbon nanotubes. <i>Small</i> , 2014 , 10, 2859-69	11	17
41	A universal gene carrier platform for treatment of human prostatic carcinoma by p53 transfection. <i>Biomaterials</i> , 2014 , 35, 3110-20	15.6	13
40	Cell membrane tracker based on restriction of intramolecular rotation. <i>ACS Applied Materials & Materials & Interfaces</i> , 2014 , 6, 8971-5	9.5	82
40		9.5	
	Radiosensitizers: Enhanced Tumor Accumulation of Sub-2 nm Gold Nanoclusters for Cancer		7
39	Interfaces, 2014, 6, 8971-5 Radiosensitizers: Enhanced Tumor Accumulation of Sub-2 nm Gold Nanoclusters for Cancer Radiation Therapy (Adv. Healthcare Mater. 1/2014). Advanced Healthcare Materials, 2014, 3, 152-152 Enhanced tumor accumulation of sub-2 nm gold nanoclusters for cancer radiation therapy.	10.1	7
39	Interfaces, 2014, 6, 8971-5 Radiosensitizers: Enhanced Tumor Accumulation of Sub-2 nm Gold Nanoclusters for Cancer Radiation Therapy (Adv. Healthcare Mater. 1/2014). Advanced Healthcare Materials, 2014, 3, 152-152 Enhanced tumor accumulation of sub-2 nm gold nanoclusters for cancer radiation therapy. Advanced Healthcare Materials, 2014, 3, 133-41 pH-responsive mesoporous silica nanoparticles employed in controlled drug delivery systems for	10.1	7 266
39 38 37	Radiosensitizers: Enhanced Tumor Accumulation of Sub-2 nm Gold Nanoclusters for Cancer Radiation Therapy (Adv. Healthcare Mater. 1/2014). Advanced Healthcare Materials, 2014, 3, 152-152 Enhanced tumor accumulation of sub-2 nm gold nanoclusters for cancer radiation therapy. Advanced Healthcare Materials, 2014, 3, 133-41 pH-responsive mesoporous silica nanoparticles employed in controlled drug delivery systems for cancer treatment. Cancer Biology and Medicine, 2014, 11, 34-43 The challenge to relate the physicochemical properties of colloidal nanoparticles to their	10.1	7 266 96
39383736	Radiosensitizers: Enhanced Tumor Accumulation of Sub-2 nm Gold Nanoclusters for Cancer Radiation Therapy (Adv. Healthcare Mater. 1/2014). Advanced Healthcare Materials, 2014, 3, 152-152 Enhanced tumor accumulation of sub-2 nm gold nanoclusters for cancer radiation therapy. Advanced Healthcare Materials, 2014, 3, 133-41 pH-responsive mesoporous silica nanoparticles employed in controlled drug delivery systems for cancer treatment. Cancer Biology and Medicine, 2014, 11, 34-43 The challenge to relate the physicochemical properties of colloidal nanoparticles to their cytotoxicity. Accounts of Chemical Research, 2013, 46, 743-9 Innovative pharmaceutical development based on unique properties of nanoscale delivery	10.1 10.1 5.2 24.3	7 266 96 297
39 38 37 36 35	Radiosensitizers: Enhanced Tumor Accumulation of Sub-2 nm Gold Nanoclusters for Cancer Radiation Therapy (Adv. Healthcare Mater. 1/2014). Advanced Healthcare Materials, 2014, 3, 152-152 Enhanced tumor accumulation of sub-2 nm gold nanoclusters for cancer radiation therapy. Advanced Healthcare Materials, 2014, 3, 133-41 pH-responsive mesoporous silica nanoparticles employed in controlled drug delivery systems for cancer treatment. Cancer Biology and Medicine, 2014, 11, 34-43 The challenge to relate the physicochemical properties of colloidal nanoparticles to their cytotoxicity. Accounts of Chemical Research, 2013, 46, 743-9 Innovative pharmaceutical development based on unique properties of nanoscale delivery formulation. Nanoscale, 2013, 5, 8307-8325 Preparation and characterization of doxorubicin functionalized tiopronin-capped gold nanorods for	10.1 10.1 5.2 24.3	7 266 96 297 91

(2010-2013)

31	Metallofullerene nanoparticles promote osteogenic differentiation of bone marrow stromal cells through BMP signaling pathway. <i>Nanoscale</i> , 2013 , 5, 1205-12	7.7	43
30	Interfacing engineered nanoparticles with biological systems: anticipating adverse nano-bio interactions. <i>Small</i> , 2013 , 9, 1573-84	11	154
29	Functionalized nanoscale micelles improve drug delivery for cancer therapy in vitro and in vivo. <i>Nano Letters</i> , 2013 , 13, 2528-34	11.5	157
28	Multifunctional hybrid silica nanoparticles for controlled doxorubicin loading and release with thermal and pH dually response. <i>Journal of Materials Chemistry B</i> , 2013 , 1, 1109-1118	7.3	106
27	Nanomaterials in medicine and pharmaceuticals: nanoscale materials developed with less toxicity and more efficacy. <i>European Journal of Nanomedicine</i> , 2013 , 5,		24
26	Superior penetration and retention behavior of 50 nm gold nanoparticles in tumors. <i>Cancer Research</i> , 2013 , 73, 319-30	10.1	247
25	Size-dependent radiosensitization of PEG-coated gold nanoparticles for cancer radiation therapy. <i>Biomaterials</i> , 2012 , 33, 6408-19	15.6	357
24	Gadolinium metallofullerenol nanoparticles inhibit cancer metastasis through matrix metalloproteinase inhibition: imprisoning instead of poisoning cancer cells. <i>Nanomedicine: Nanotechnology, Biology, and Medicine</i> , 2012 , 8, 136-46	6	86
23	Single-walled carbon nanotubes alter cytochrome c electron transfer and modulate mitochondrial function. <i>ACS Nano</i> , 2012 , 6, 10486-96	16.7	80
22	Enhanced siRNA delivery and silencing gold-chitosan nanosystem with surface charge-reversal polymer assembly and good biocompatibility. <i>ACS Nano</i> , 2012 , 6, 7340-51	16.7	147
21	Size-dependent localization and penetration of ultrasmall gold nanoparticles in cancer cells, multicellular spheroids, and tumors in vivo. <i>ACS Nano</i> , 2012 , 6, 4483-93	16.7	590
20	Enhanced dispersibility and cellular transmembrane capability of single-wall carbon nanotubes by polycyclic organic compounds as chaperon. <i>Nanoscale</i> , 2012 , 4, 3983-9	7.7	16
19	Theranostic nanoparticles engineered for clinic and pharmaceutics. <i>Accounts of Chemical Research</i> , 2011 , 44, 1114-22	24.3	228
18	Gold nanoparticles induce autophagosome accumulation through size-dependent nanoparticle uptake and lysosome impairment. <i>ACS Nano</i> , 2011 , 5, 8629-39	16.7	450
17	Ternary complexes of amphiphilic polycaprolactone-graft-poly (N,N-dimethylaminoethyl methacrylate), DNA and polyglutamic acid-graft-poly(ethylene glycol) for gene delivery. <i>Biomaterials</i> , 2011 , 32, 4283-92	15.6	76
16	Potent angiogenesis inhibition by the particulate form of fullerene derivatives. ACS Nano, 2010, 4, 2773	8- 86 .7	134
15	Metallofullerene nanoparticles circumvent tumor resistance to cisplatin by reactivating endocytosis. <i>Proceedings of the National Academy of Sciences of the United States of America</i> , 2010 , 107, 7449-54	11.5	206
14	Fullerenes as unique nanopharmaceuticals for disease treatment. Science China Chemistry, 2010, 53, 22	3 3 .324	1027

13	The scavenging of reactive oxygen species and the potential for cell protection by functionalized fullerene materials. <i>Biomaterials</i> , 2009 , 30, 611-21	15.6	337
12	Inhibition of tumor growth by endohedral metallofullerenol nanoparticles optimized as reactive oxygen species scavenger. <i>Molecular Pharmacology</i> , 2008 , 74, 1132-40	4.3	109
11	SIRT1 contributes in part to cisplatin resistance in cancer cells by altering mitochondrial metabolism. <i>Molecular Cancer Research</i> , 2008 , 6, 1499-506	6.6	84
10	Disruption of microfilaments by cytochalasin B decreases accumulation of cisplatin in human epidermal carcinoma and liver carcinoma cell lines. <i>Cancer Chemotherapy and Pharmacology</i> , 2008 , 62, 977-84	3.5	7
9	Endocytic recycling compartments altered in cisplatin-resistant cancer cells. <i>Cancer Research</i> , 2006 , 66, 2346-53	10.1	53
8	Trafficking and localization of platinum complexes in cisplatin-resistant cell lines monitored by fluorescence-labeled platinum. <i>Journal of Cellular Physiology</i> , 2005 , 202, 635-41	7	51
7	Different roles for K+ channels in cisplatin-resistant cell lines argue against a critical role for these channels in cisplatin resistance. <i>Anticancer Research</i> , 2005 , 25, 4113-22	2.3	6
6	Down-regulation and altered localization of gamma-catenin in cisplatin-resistant adenocarcinoma cells. <i>Molecular Pharmacology</i> , 2004 , 65, 1217-24	4.3	14
5	A pleiotropic defect reducing drug accumulation in cisplatin-resistant cells. <i>Journal of Inorganic Biochemistry</i> , 2004 , 98, 1599-606	4.2	25
4	Changes in biophysical parameters of plasma membranes influence cisplatin resistance of sensitive and resistant epidermal carcinoma cells. <i>Experimental Cell Research</i> , 2004 , 293, 283-91	4.2	24
3	Mislocalization of membrane proteins associated with multidrug resistance in cisplatin-resistant cancer cell lines. <i>Cancer Research</i> , 2003 , 63, 5909-16	10.1	70
2	Red-Light-Responsive Metallopolymer Nanocarriers with Conjugated and Encapsulated Drugs for Phototherapy Against Multidrug-Resistant Tumors. <i>Small</i> ,2201672	11	1
1	Conscription of Immune Cells by Light-Activatable Silencing NK-Derived Exosome (LASNEO) for Synergetic Tumor Eradication. <i>Advanced Science</i> , 2201135	13.6	3