Daniel Argüeso

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4689881/publications.pdf

Version: 2024-02-01

41 papers

2,037 citations

236833 25 h-index 315616 38 g-index

47 all docs

47 docs citations

47 times ranked

2578 citing authors

#	Article	IF	CITATIONS
1	Temperature response to future urbanization and climate change. Climate Dynamics, 2014, 42, 2183-2199.	1.7	218
2	Design of a regional climate modelling projection ensemble experiment – NARCliM. Geoscientific Model Development, 2014, 7, 621-629.	1.3	175
3	Evaluation of WRF Parameterizations for Climate Studies over Southern Spain Using a Multistep Regionalization. Journal of Climate, 2011, 24, 5633-5651.	1.2	109
4	Relationships between climate variability, soil moisture, and Australian heatwaves. Journal of Geophysical Research D: Atmospheres, 2015, 120, 8144-8164.	1.2	108
5	Influence of landâ€∎tmosphere feedbacks on temperature and precipitation extremes in the GLACE MIP5 ensemble. Journal of Geophysical Research D: Atmospheres, 2016, 121, 607-623.	1.2	102
6	Numerical Simulation of Atmospheric Lamb Waves Generated by the 2022 Hungaâ€Tonga Volcanic Eruption. Geophysical Research Letters, 2022, 49, .	1.5	99
7	Effects of City Expansion on Heat Stress under Climate Change Conditions. PLoS ONE, 2015, 10, e0117066.	1.1	87
8	Natural hazards in Australia: heatwaves. Climatic Change, 2016, 139, 101-114.	1.7	80
9	<scp>Convection</scp> â€permitting modeling with regional climate models: Latest developments and next steps. Wiley Interdisciplinary Reviews: Climate Change, 2021, 12, e731.	3.6	74
10	Quantifying the overall added value of dynamical downscaling and the contribution from different spatial scales. Journal of Geophysical Research D: Atmospheres, 2016, 121, 1575-1590.	1.2	69
11	Trends of extreme precipitation and associated synoptic patterns over the southern Iberian Peninsula. Journal of Hydrology, 2011, 409, 497-511.	2.3	67
12	Strong Intensification of Hourly Rainfall Extremes by Urbanization. Geophysical Research Letters, 2020, 47, e2020GL088758.	1.5	62
13	Precipitation bias correction of very high resolution regional climate models. Hydrology and Earth System Sciences, 2013, 17, 4379-4388.	1.9	57
14	Seasonal mean temperature changes control future heat waves. Geophysical Research Letters, 2016, 43, 7653-7660.	1.5	51
15	The NARCliM project: model agreement and significance of climate projections. Climate Research, 2016, 69, 209-227.	0.4	48
16	Evaluation of WRF Mean and Extreme Precipitation over Spain: Present Climate (1970–99). Journal of Climate, 2012, 25, 4883-4897.	1.2	46
17	Precipitation over urban areas in the western Maritime Continent using a convection-permitting model. Climate Dynamics, 2016, 47, 1143-1159.	1.7	46
18	Evaluating reanalysis-driven CORDEX regional climate models over Australia: model performance and errors. Climate Dynamics, 2019, 53, 2985-3005.	1.7	44

#	Article	IF	Citations
19	Amplification of Australian Heatwaves via Local Landâ€Atmosphere Coupling. Journal of Geophysical Research D: Atmospheres, 2019, 124, 13625-13647.	1.2	43
20	Highâ€resolution projections of mean and extreme precipitation over Spain using the WRF model (2070–2099 versus 1970–1999). Journal of Geophysical Research, 2012, 117, .	3.3	40
21	Bias-corrected regional climate projections of extreme rainfall in south-east Australia. Theoretical and Applied Climatology, 2017, 130, 1085-1098.	1.3	39
22	Resolution Sensitivity of Cyclone Climatology over Eastern Australia Using Six Reanalysis Products*. Journal of Climate, 2015, 28, 9530-9549.	1,2	30
23	Evaluation of long-term precipitation and temperature Weather Research and Forecasting simulations for southeast Australia. Climate Research, 2016, 67, 99-115.	0.4	29
24	Using large-scale diagnostic quantities to investigate change in East Coast Lows. Climate Dynamics, 2015, 45, 2443-2453.	1.7	27
25	Evaluation of the regional climate response in Australia to large-scale climate modes in the historical NARCliM simulations. Climate Dynamics, 2017, 49, 2815-2829.	1.7	27
26	Longâ€range seasonal streamflow forecasting over the <scp>I</scp> berian <scp>P</scp> eninsula using largeâ€scale atmospheric and oceanic information. Water Resources Research, 2015, 51, 3543-3567.	1.7	26
27	The effect of bias correction and climate model resolution on wheat simulations forced with a regional climate model ensemble. International Journal of Climatology, 2016, 36, 4577-4591.	1.5	26
28	Resolution dependence of the simulated precipitation and diurnal cycle over the Maritime Continent. Climate Dynamics, 2017, 48, 4009-4028.	1.7	24
29	Wind power characteristics of Oahu, Hawaii. Renewable Energy, 2018, 128, 324-336.	4.3	24
30	Projected change in characteristics of near surface temperature inversions for southeast Australia. Climate Dynamics, 2019, 52, 1487-1503.	1.7	24
31	Contribution of mean climate to hot temperature extremes for present and future climates. Weather and Climate Extremes, 2020, 28, 100255.	1.6	22
32	Precipitation Features of the Maritime Continent in Parameterized and Explicit Convection Models. Journal of Climate, 2020, 33, 2449-2466.	1,2	20
33	Spatio-temporal variability in Ebro river basin (NE Spain): Global SST as potential source of predictability on decadal time scales. Journal of Hydrology, 2011, 409, 759-775.	2.3	19
34	Comparison of various climate change projections of eastern Australian rainfall., 2015, 65, 72-89.		18
35	Evaluating the representation of Australian East Coast Lows in a regional climate model ensemble. Australian Meteorological Magazine, 2016, 66, 108-124.	0.4	15
36	Regional Versus Remote Atmosphereâ€Ocean Drivers of the Rapid Projected Intensification of the East Australian Current. Journal of Geophysical Research: Oceans, 2020, 125, e2019JC015889.	1.0	14

#	Article	IF	CITATIONS
37	Scalar arguments of the mathematical functions defining molecular and turbulent transport of heat and mass in compressible fluids. Tellus, Series B: Chemical and Physical Meteorology, 2022, 63, 1059.	0.8	11
38	Evaluating Precipitation Errors Using the Environmentally Conditioned Intensityâ€Frequency Decomposition Method. Journal of Advances in Modeling Earth Systems, 2021, 13, e2020MS002447.	1.3	5
39	Evaluating the representation of Australian East Coast Lows in a regional climate model ensemble. Journal of Southern Hemisphere Earth Systems Science, 2016, 66, 108-124.	0.7	4
40	East Australian Cyclones and Airâ€6ea Feedbacks. Journal of Geophysical Research D: Atmospheres, 2021, 126, e2020JD034391.	1.2	0
41	Mechanisms for extreme precipitation changes in a tropical archipelago. Journal of Climate, 2022, , 1-53.	1.2	0