Guoku Hu

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4689822/publications.pdf

Version: 2024-02-01

62 papers 10,346 citations

32 h-index 59 g-index

64 all docs

64
docs citations

64 times ranked 16568 citing authors

#	Article	IF	CITATIONS
1	Controllable fabrication of alginate/poly-L-ornithine polyelectrolyte complex hydrogel networks as therapeutic drug and cell carriers. Acta Biomaterialia, 2022, 138, 182-192.	4.1	17
2	Primary cilia and ciliary signaling pathways in aging and age-related brain disorders. Neurobiology of Disease, 2022, 163, 105607.	2.1	41
3	Extracellular vesicleâ€mediated delivery of circDYM alleviates CUSâ€induced depressiveâ€like behaviours. Journal of Extracellular Vesicles, 2022, 11, e12185.	5.5	43
4	Extracellular Vesicle-Mediated Delivery of Ultrasmall Superparamagnetic Iron Oxide Nanoparticles to Mice Brain. Frontiers in Pharmacology, 2022, 13, 819516.	1.6	10
5	Exosomes derived from differentiated human ADMSC with the Schwann cell phenotype modulate peripheral nerve-related cellular functions. Bioactive Materials, 2022, 14, 61-75.	8.6	26
6	Noncoding RNAs and Epigenetic Regulation in Aging., 2021,, 348-363.		0
7	Biogenesis, physiological functions and potential applications of extracellular vesicles in substance use disorders. Cellular and Molecular Life Sciences, 2021, 78, 4849-4865.	2.4	18
8	HIV Tat-Mediated Induction of Monocyte Transmigration Across the Blood–Brain Barrier: Role of Chemokine Receptor CXCR3. Frontiers in Cell and Developmental Biology, 2021, 9, 724970.	1.8	8
9	Astrocyte-Derived Extracellular Vesicle–Mediated Activation of Primary Ciliary Signaling Contributes to the Development of Morphine Tolerance. Biological Psychiatry, 2021, 90, 575-585.	0.7	21
10	HIV-1 Tat-Induced Astrocytic Extracellular Vesicle miR-7 Impairs Synaptic Architecture. Journal of NeuroImmune Pharmacology, 2020, 15, 538-553.	2.1	35
11	Intranasal Delivery of lincRNA-Cox2 siRNA Loaded Extracellular Vesicles Decreases Lipopolysaccharide-Induced Microglial Proliferation in Mice. Journal of NeuroImmune Pharmacology, 2020, 15, 390-399.	2.1	36
12	Strategies for the use of Extracellular Vesicles for the Delivery of Therapeutics. Journal of NeuroImmune Pharmacology, 2020, 15, 422-442.	2.1	63
13	Neuronalâ€derived extracellular vesicles are enriched in the brain and serum of HIVâ€1 transgenic rats. Journal of Extracellular Vesicles, 2020, 9, 1703249.	5.5	31
14	Chromatin isolation by RNA purification (ChIRP) and its applications. , 2020, , 507-521.		1
15	Engineered Extracellular Vesicles Loaded With miR-124 Attenuate Cocaine-Mediated Activation of Microglia. Frontiers in Cell and Developmental Biology, 2020, 8, 573.	1.8	41
16	Morphineâ€mediated release of miRâ€138 in astrocyteâ€derived extracellular vesicles promotes microglial activation. Journal of Extracellular Vesicles, 2020, 10, e12027.	5.5	36
17	Extracellular vesicular MicroRNA-27a* contributes to cardiac hypertrophy in chronic heart failure. Journal of Molecular and Cellular Cardiology, 2020, 143, 120-131.	0.9	44
18	HIV-1 Tat-mediated astrocytic amyloidosisÂinvolves the HIF-1α/lncRNA BACE1-AS axis. PLoS Biology, 2020, 18, e3000660.	2.6	26

#	Article	IF	Citations
19	Extracellular Vesicles in Viral Infections of the Nervous System. Viruses, 2020, 12, 700.	1.5	22
20	Abnormal methylation of PIK3AP1 was involved in regulating the immune inflammatory response of GES-1Âcells induced by Helicobacter pylori. Biochemical and Biophysical Research Communications, 2020, 524, 36-42.	1.0	8
21	HIV Tat-mediated induction of autophagy regulates the disruption of ZO-1 in brain endothelial cells. Tissue Barriers, 2020, 8, 1748983.	1.6	18
22	Long Noncoding RNAs in Substance Use Disorders. RNA Technologies, 2020, , 465-490.	0.2	0
23	Cocaine-induced release of CXCL10 from pericytes regulates monocyte transmigration into the CNS. Journal of Cell Biology, 2019, 218, 700-721.	2.3	32
24	Identification of age- and gender-associated long noncoding RNAs in the human brain with Alzheimer's disease. Neurobiology of Aging, 2019, 81, 116-126.	1.5	52
25	Genome-wide methods for investigating long noncoding RNAs. Biomedicine and Pharmacotherapy, 2019, 111, 395-401.	2.5	55
26	Exosomal miR-9 Released from HIV Tat Stimulated Astrocytes Mediates Microglial Migration. Journal of NeuroImmune Pharmacology, 2018, 13, 330-344.	2.1	56
27	Minimal information for studies of extracellular vesicles 2018 (MISEV2018): a position statement of the International Society for Extracellular Vesicles and update of the MISEV2014 guidelines. Journal of Extracellular Vesicles, 2018, 7, 1535750.	5.5	6,961
28	Molecular mechanisms of long noncoding RNAs and their role in disease pathogenesis. Oncotarget, 2018, 9, 18648-18663.	0.8	144
29	Astrocyte EV-Induced lincRNA-Cox2 Regulates Microglial Phagocytosis: Implications for Morphine-Mediated Neurodegeneration. Molecular Therapy - Nucleic Acids, 2018, 13, 450-463.	2.3	83
30	Epigenetic Promoter DNA Methylation of miR-124 Promotes HIV-1 Tat-Mediated Microglial Activation via MECP2-STAT3 Axis. Journal of Neuroscience, 2018, 38, 5367-5383.	1.7	45
31	KH-type splicing regulatory protein is regulated by nuclear factor-ÎB signaling to mediate innate immunity in Caco-2 cells infected by Salmonella enteritidis. Folia Microbiologica, 2018, 63, 669-676.	1.1	5
32	Tat-Mediated Induction of miRs-34a & Downregulation of SIRT1: Implications for Aging in HAND. Journal of NeuroImmune Pharmacology, 2017, 12, 420-432.	2.1	30
33	A long noncoding RNA, lincRNAâ€₹nfaip3, acts as a coregulator of NFâ€₽̂B to modulate inflammatory gene transcription in mouse macrophages. FASEB Journal, 2017, 31, 1215-1225.	0.2	75
34	A Vector-Based Short Hairpin RNA Targeting Aurora B Suppresses Human Prostatic Carcinoma Growth. Technology in Cancer Research and Treatment, 2017, 16, 112-119.	0.8	2
35	Antibacterial activity of <i>Pyrrosia petiolosa</i> ethyl acetate extract against <i>Staphylococcus aureus</i> by decreasing <i>hla</i> and <i>sea</i> virulence genes. Natural Product Research, 2017, 31, 1347-1350.	1.0	5
36	The contribution of toll-like receptor 2 on Helicobacter pylori activation of the nuclear factor-kappa B signaling pathway in gastric epithelial cells. Microbial Pathogenesis, 2016, 98, 63-68.	1.3	17

#	Article	IF	CITATIONS
37	Reactive Oxygen Species/Hypoxia-Inducible Factor-1α/Platelet-Derived Growth Factor-BB Autocrine Loop Contributes to Cocaine-Mediated Alveolar Epithelial Barrier Damage. American Journal of Respiratory Cell and Molecular Biology, 2016, 55, 736-748.	1.4	19
38	Emerging roles of extracellular vesicles in neurodegenerative disorders: focus on HIV-associated neurological complications. Cell Death and Disease, 2016, 7, e2481-e2481.	2.7	50
39	The biological activity of cationic liposomes in drug delivery and toxicity test in animal models. Environmental Toxicology and Pharmacology, 2016, 47, 159-164.	2.0	17
40	Regulation of morphine-induced synaptic alterations: Role of oxidative stress, ER stress, and autophagy. Journal of Cell Biology, 2016, 215, 245-258.	2.3	88
41	Mechanisms of Platelet-Derived Growth Factor-BB in Restoring HIV Tat-Cocaine-Mediated Impairment of Neuronal Differentiation. Molecular Neurobiology, 2016, 53, 6377-6387.	1.9	15
42	LincRNA-Cox2 Promotes Late Inflammatory Gene Transcription in Macrophages through Modulating SWI/SNF-Mediated Chromatin Remodeling. Journal of Immunology, 2016, 196, 2799-2808.	0.4	192
43	LincRNAâ€Cox2 modulates TNFâ€Î±â€induced transcription of <i>ll12b</i> gene in intestinal epithelial cells through regulation of Miâ€2/NuRDâ€mediated epigenetic histone modifications. FASEB Journal, 2016, 30, 1187-1197.	0.2	88
44	MiR-9 promotes microglial activation by targeting MCPIP1. Nature Communications, 2014, 5, 4386.	5.8	133
45	Cryptosporidium parvum induces SIRT1 expression in host epithelial cells through downregulating let-7i. Human Immunology, 2014, 75, 760-765.	1.2	34
46	Immunology of Cryptosporidiosis. , 2014, , 423-454.		8
46	Immunology of Cryptosporidiosis. , 2014, , 423-454. Release of Luminal Exosomes Contributes to TLR4-Mediated Epithelial Antimicrobial Defense. PLoS Pathogens, 2013, 9, e1003261.	2.1	159
	Release of Luminal Exosomes Contributes to TLR4-Mediated Epithelial Antimicrobial Defense. PLoS	2.1	
47	Release of Luminal Exosomes Contributes to TLR4-Mediated Epithelial Antimicrobial Defense. PLoS Pathogens, 2013, 9, e1003261. HIV Tat Induces Expression of ICAM-1 in HUVECs: Implications for miR-221/-222 in HIV-Associated		159
47	Release of Luminal Exosomes Contributes to TLR4-Mediated Epithelial Antimicrobial Defense. PLoS Pathogens, 2013, 9, e1003261. HIV Tat Induces Expression of ICAM-1 in HUVECs: Implications for miR-221/-222 in HIV-Associated Cardiomyopathy. PLoS ONE, 2013, 8, e60170.	1.1	159 69
48	Release of Luminal Exosomes Contributes to TLR4-Mediated Epithelial Antimicrobial Defense. PLoS Pathogens, 2013, 9, e1003261. HIV Tat Induces Expression of ICAM-1 in HUVECs: Implications for miR-221/-222 in HIV-Associated Cardiomyopathy. PLoS ONE, 2013, 8, e60170. Exosomal miRNAs: Biological Properties and Therapeutic Potential. Frontiers in Genetics, 2012, 3, 56. Platelet-derived growth factor (PDGF)-BB-mediated induction of monocyte chemoattractant protein 1 in human astrocytes: implications for HIV-associated neuroinflammation. Journal of	1.1	159 69 316
47 48 49 50	Release of Luminal Exosomes Contributes to TLR4-Mediated Epithelial Antimicrobial Defense. PLoS Pathogens, 2013, 9, e1003261. HIV Tat Induces Expression of ICAM-1 in HUVECs: Implications for miR-221/-222 in HIV-Associated Cardiomyopathy. PLoS ONE, 2013, 8, e60170. Exosomal miRNAs: Biological Properties and Therapeutic Potential. Frontiers in Genetics, 2012, 3, 56. Platelet-derived growth factor (PDGF)-BB-mediated induction of monocyte chemoattractant protein 1 in human astrocytes: implications for HIV-associated neuroinflammation. Journal of Neuroinflammation, 2012, 9, 262. miR-16 Targets Transcriptional Corepressor SMRT and Modulates NF-kappaB-Regulated Transactivation	1.1	159 69 316 61
47 48 49 50	Release of Luminal Exosomes Contributes to TLR4-Mediated Epithelial Antimicrobial Defense. PLoS Pathogens, 2013, 9, e1003261. HIV Tat Induces Expression of ICAM-1 in HUVECs: Implications for miR-221/-222 in HIV-Associated Cardiomyopathy. PLoS ONE, 2013, 8, e60170. Exosomal miRNAs: Biological Properties and Therapeutic Potential. Frontiers in Genetics, 2012, 3, 56. Platelet-derived growth factor (PDGF)-BB-mediated induction of monocyte chemoattractant protein 1 in human astrocytes: implications for HIV-associated neuroinflammation. Journal of Neuroinflammation, 2012, 9, 262. miR-16 Targets Transcriptional Corepressor SMRT and Modulates NF-kappaB-Regulated Transactivation of Interleukin-8 Gene. PLoS ONE, 2012, 7, e30772. MicroRNA-221 controls expression of intercellular adhesion molecule-1 in epithelial cells in response	1.1 1.1 3.1	159 69 316 61 48

#	Article	IF	CITATIONS
55	MicroRNAâ€98 and <i>letâ€7</i> Regulate Expression of Suppressor of Cytokine Signaling 4 in Biliary Epithelial Cells in Response to <i>Cryptosporidium parvum</i> Infection. Journal of Infectious Diseases, 2010, 202, 125-135.	1.9	71
56	Binding of NF-kappaB p65 subunit to the promoter elements is involved in LPS-induced transactivation of miRNA genes in human biliary epithelial cells. Nucleic Acids Research, 2010, 38, 3222-3232.	6.5	180
57	miR-221 suppresses ICAM-1 translation and regulates interferon- \hat{I}^3 -induced ICAM-1 expression in human cholangiocytes. American Journal of Physiology - Renal Physiology, 2010, 298, G542-G550.	1.6	52
58	MicroRNAs in Epithelial Antimicrobial Immunity., 2010, , 355-367.		1
59	MicroRNA-513 Regulates B7-H1 Translation and Is Involved in IFN-Î ³ -Induced B7-H1 Expression in Cholangiocytes. Journal of Immunology, 2009, 182, 1325-1333.	0.4	190
60	NF-kappaB p65-Dependent Transactivation of miRNA Genes following Cryptosporidium parvum Infection Stimulates Epithelial Cell Immune Responses. PLoS Pathogens, 2009, 5, e1000681.	2.1	191
61	MicroRNA-98 and <i>let-7</i> Confer Cholangiocyte Expression of Cytokine-Inducible Src Homology 2-Containing Protein in Response to Microbial Challenge. Journal of Immunology, 2009, 183, 1617-1624.	0.4	113
62	Molecular cloning of cDNAs for 14-3-3 and its protein interactions in a white-rot fungusPhanerochaete chrysosporium. Annals of Microbiology, 2006, 56, 191-196.	1.1	1