Douglas Junior Nicolin

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4689739/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Investigation of the drying kinetics of brewer's spent grain (<scp>BSG</scp>) using artificial neural networks and traditional empirical models. Canadian Journal of Chemical Engineering, 2022, 100, 3727-3735.	0.9	0
2	Fractional calculus to control transport phenomena in food engineering: A systematic review of barriers and data agenda. Journal of Food Process Engineering, 2022, 45, .	1.5	2
3	Modeling the drying kinetics of alginate particles considering shrinkage. Journal of Food Process Engineering, 2021, 44, e13760.	1.5	0
4	Soybean drying as a moving boundary problem: Shrinkage and moisture kinetics prediction. Journal of Food Process Engineering, 2020, 43, e13497.	1.5	6
5	Reaproveitamento do bagaço de malte na biossorção do corante têxtil neolan preto WA. Revista Tecnologia E Sociedade, 2020, 16, 15.	0.0	0
6	Modeling of soybean hydration as a Stefan problem: Boundary immobilization method. Journal of Food Process Engineering, 2018, 41, e12693.	1.5	3
7	Generalization of a lumped parameters model using fractional derivatives applied to rice hydration. Journal of Food Process Engineering, 2018, 41, e12641.	1.5	5
8	Mathematical modeling of soybean drying by a fractionalâ€order kinetic model. Journal of Food Process Engineering, 2018, 41, e12655.	1.5	14
9	Parboiled Rice and Parboiling Process. Food Engineering Reviews, 2018, 10, 165-185.	3.1	18
10	Effects of variable diffusivity on soybean hydration modelling as a Stefan problem. Canadian Journal of Chemical Engineering, 2017, 95, 1004-1013.	0.9	5
11	Modeling rice and corn hydration kinetic by Nicolin–Jorge model. Journal of Food Process Engineering, 2017, 40, e12588.	1.5	9
12	GEOSTATISTICAL MODELS USED IN GRAIN HYDRATION. Engevista, 2017, 19, 648.	0.1	0
13	Study of uncertainty in the fitting of diffusivity of Fick's Second Law of Diffusion with the use of Bootstrap Method. Journal of Food Engineering, 2016, 184, 63-68.	2.7	26
14	Assessment of the initial moisture content on soybean drying kinetics and transport properties. Drying Technology, 2016, 34, 360-371.	1.7	21
15	Evaluation of distributed parameters mathematical models applied to grain hydration with volume change. Heat and Mass Transfer, 2015, 51, 107-116.	1.2	7
16	Numerical Solution of a Nonlinear Diffusion Model for Soybean Hydration with Moving Boundary. International Journal of Food Engineering, 2015, 11, 587-595.	0.7	6
17	Moving boundary modeling of conventional and transgenic soybean hydration: Moisture profile and moving front experimental validation. International Journal of Heat and Mass Transfer, 2015, 90, 568-577.	2.5	14
18	Analytical solution and experimental validation of a model for hydration of soybeans with variable mass transfer coefficient. Journal of Food Engineering, 2015, 149, 17-23.	2.7	13

#	Article	IF	CITATIONS
19	SIMULATION AND ANALYSIS OF AN INDUSTRIAL COLUMN SYSTEM OF BIOETHANOL DISTILLATION HEATED BY VAPOR DIRECT INJECTION. Engevista, 2015, 17, 254.	0.1	2
20	Stefan Problem Approach Applied to the Diffusion Process in Grain Hydration. Transport in Porous Media, 2014, 102, 387-402.	1.2	12
21	SOYBEAN HYDRATION: INVESTIGATION OF DISTRIBUTED PARAMETER MODELS WITH RESPECT TO SURFACE BOUNDARY CONDITIONS. Chemical Engineering Communications, 2013, 200, 959-976.	1.5	12
22	Hsu model analysis considering grain volume variation during soybean hydration. Journal of Food Engineering, 2012, 111, 496-504.	2.7	19
23	DIFUSÃO DE UMIDADE EM GRÃOS DE SOJA COMO UM PROBLEMA DO TIPO STEFAN: MODELAGEM MATEMÃTICA E VALIDAÇÃO EXPERIMENTAL. , 0, , .		0