Hugo Biscaia

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4689577/publications.pdf Version: 2024-02-01

HUCO RISCAIA

#	Article	IF	CITATIONS
1	Using digital image correlation to evaluate the bond between carbon fibre-reinforced polymers and timber. Structural Health Monitoring, 2022, 21, 534-557.	7.5	11
2	Influence of salt fog and ambient condition exposure on CFRP-to-steel bonded joints. Composite Structures, 2022, 280, 114874.	5.8	10
3	Effect of load distribution on the behaviour of RC beams strengthened in flexure with near-surface mounted (NSM) FRP. Composite Structures, 2022, 279, 114782.	5.8	24
4	Interfacial failure of circular or tubular hybrid bonded joints: A theoretical description. Engineering Failure Analysis, 2022, 132, 105936.	4.0	7
5	Fire behaviour of CFRP-strengthened RC slabs using different techniques – EBR, NSM and CREatE. Composites Part B: Engineering, 2022, 230, 109471.	12.0	12
6	Thermal wear of epoxy composite modified with rutile titanium dioxide. Composite Structures, 2022, 282, 115127.	5.8	9
7	Emerging anchored FRP systems bonded to steel subjected to monotonic and cyclic loading: A numerical study. Engineering Fracture Mechanics, 2022, 261, 108250.	4.3	6
8	Low-grade RC beams strengthened with TRM composite based on basalt, carbon and steel textiles: Experimental and analytical study. Case Studies in Construction Materials, 2022, 16, e00906.	1.7	4
9	Debonding analysis of FRP-to-concrete interfaces between two adjacent cracks in plated beams under temperature variations. Engineering Fracture Mechanics, 2022, 263, 108307.	4.3	9
10	Consideration of Critical Parameters for Improving the Efficiency of Concrete Structures Reinforced with FRP. Materials, 2022, 15, 2774.	2.9	6
11	Experimental calibration of the bond-slip relationship of different CFRP-to-timber joints through digital image correlation measurements. Composites Part C: Open Access, 2021, 4, 100099.	3.2	6
12	Effect of mechanical anchorage on the bond performance of double overlapped CFRP-to-steel joints. Composite Structures, 2021, 267, 113902.	5.8	16
13	Numerical study on the flexural behaviour of normal- and high-strength concrete beams reinforced with GFRP bar, using different amounts of transverse reinforcement. Structures, 2021, 34, 3113-3124.	3.6	6
14	Closed-form solutions for modellingthe response of adhesively bonded joints under thermal loading through exponential softening laws. Mechanics of Materials, 2020, 148, 103527.	3.2	15
15	Strengthening RC Beams Using Stainless Steel Continuous Reinforcement Embedded at Ends. Journal of Structural Engineering, 2020, 146, .	3.4	11
16	Adherence prediction between ribbed steel rebars and concrete: A new perspective and comparison with codes. Structures, 2020, 25, 979-999.	3.6	10
17	Experimental analysis of different anchorage solutions for laminated carbon fiber-reinforced polymers adhesively bonded to timber. Composite Structures, 2020, 243, 112228.	5.8	12
18	On factors affecting CFRP-steel bonded joints. Construction and Building Materials, 2019, 226, 360-375.	7.2	23

HUGO BISCAIA

#	Article	IF	CITATIONS
19	Prediction of Stress–Strain Curves Based on Hydric Non-Destructive Tests on Sandstones. Materials, 2019, 12, 3366.	2.9	3
20	Cyclic performance of adhesively bonded joints using the Distinct Element Method: Damage and parametric analysis. Composites Part B: Engineering, 2019, 178, 107468.	12.0	5
21	A Simple Method for the Determination of the Bond-Slip Model of Artificially Aged Joints. Journal of Composites for Construction, 2019, 23, 04019028.	3.2	10
22	Monotonic and quasi-static cyclic bond response of CFRP-to-steel joints after salt fog exposure. Composites Part B: Engineering, 2019, 168, 532-549.	12.0	28
23	Scatter of Constitutive Models of the Mechanical Properties of Concrete: Comparison of Major International Codes. Journal of Advanced Concrete Technology, 2019, 17, 102-125.	1.8	10
24	A temperature-dependent bond-slip model for CFRP-to-steel joints. Composite Structures, 2019, 217, 186-205.	5.8	30
25	The influence of temperature variations on adhesively bonded structures: A non-linear theoretical perspective. International Journal of Non-Linear Mechanics, 2019, 113, 67-85.	2.6	25
26	Estimations of the debonding process of aged joints through a new analytical method. Composite Structures, 2019, 211, 577-595.	5.8	12
27	Bond durability of CFRP laminates-to-steel joints subjected to freeze-thaw. Composite Structures, 2019, 212, 243-258.	5.8	39
28	Design method and verification of steel plate anchorages for FRP-to-concrete bonded interfaces. Composite Structures, 2018, 192, 52-66.	5.8	31
29	Theoretical analysis of fracture in double overlap bonded joints with FRP composites and thin steel plates. Engineering Fracture Mechanics, 2018, 190, 435-460.	4.3	33
30	Stainless Steel Bonded to Concrete: An Experimental Assessment using the DIC Technique. International Journal of Concrete Structures and Materials, 2018, 12, .	3.2	22
31	CFRP-to-steel bonded joints subjected to cyclic loading: An experimental study. Composites Part B: Engineering, 2018, 146, 28-41.	12.0	42
32	Mechanical response of anchored FRP bonded joints: A nonlinear analytical approach. Mechanics of Advanced Materials and Structures, 2018, 25, 238-252.	2.6	33
33	A Simple Analytical Approach for Creep Analysis of EB-FRP Systems. Key Engineering Materials, 2018, 774, 42-47.	0.4	3
34	Experimental and numerical analyses of flexurally-strengthened concrete T-beams with stainless steel. Engineering Structures, 2018, 172, 981-996.	5.3	18
35	Nondestructive testing methodology to assess the conservation of historic stone buildings and monuments. , 2018, , 255-294.		13
36	Development of a simple bond-slip model for joints monitored with the DIC technique. Archives of Civil and Mechanical Engineering, 2018, 18, 1535-1546.	3.8	13

HUGO BISCAIA

#	Article	IF	CITATIONS
37	Analytical model with uncoupled adhesion laws for the bond failure prediction of curved FRP-concrete joints subjected to temperature. Theoretical and Applied Fracture Mechanics, 2017, 89, 63-78.	4.7	26
38	Bond characteristics of CFRP-to-steel joints. Journal of Constructional Steel Research, 2017, 138, 401-419.	3.9	60
39	Prediction of the interfacial performance of CFRP laminates and old timber bonded joints with different strengthening techniques. Composites Part B: Engineering, 2017, 108, 1-17.	12.0	46
40	Flexural Strengthening of Old Timber Floors with Laminated Carbon Fiber–Reinforced Polymers. Journal of Composites for Construction, 2017, 21, .	3.2	32
41	Lifetime modelling of chloride-induced corrosion in concrete structures with Portland and blended cements. Structure and Infrastructure Engineering, 2016, 12, 1013-1023.	3.7	9
42	Inâ€Plane Displacement and Strain Image Analysis. Computer-Aided Civil and Infrastructure Engineering, 2016, 31, 292-304.	9.8	16
43	A nonlinear analytical model to predict the full-range debonding process of FRP-to-parent material interfaces free of any mechanical anchorage devices. Composite Structures, 2016, 138, 52-63.	5.8	41
44	Analysis of the debonding process of CFRP-to-timber interfaces. Construction and Building Materials, 2016, 113, 96-112.	7.2	41
45	Influence of External Compressive Stresses on the Performance of GFRP-to-Concrete Interfaces Subjected to Aggressive Environments: An Experimental Analysis. Journal of Composites for Construction, 2016, 20, .	3.2	11
46	Flexural Strengthening of Columns with CFRP Composites and Stainless Steel: Cyclic Behavior. Journal of Structural Engineering, 2016, 142, .	3.4	12
47	Experimental Evaluation of Bonding between CFRP Laminates and Different Structural Materials. Journal of Composites for Construction, 2016, 20, .	3.2	56
48	A new discrete method to model unidirectional FRP-to-parent material bonded joints subjected to mechanical loads. Composite Structures, 2015, 121, 280-295.	5.8	33
49	Analysis of load–strain models for RC square columns confined with CFRP. Composites Part B: Engineering, 2015, 74, 23-41.	12.0	19
50	Bond-slip model for FRP-to-concrete bonded joints under external compression. Composites Part B: Engineering, 2015, 80, 246-259.	12.0	63
51	Numerical modelling of the effects of elevated service temperatures on the debonding process of FRP-to-concrete bonded joints. Composites Part B: Engineering, 2015, 70, 64-79.	12.0	41
52	Factors influencing the performance of externally bonded reinforcement systems of GFRP-to-concrete interfaces. Materials and Structures/Materiaux Et Constructions, 2015, 48, 2961-2981.	3.1	34
53	An experimental study of GFRP-to-concrete interfaces submitted to humidity cycles. Composite Structures, 2014, 110, 354-368.	5.8	45
54	Numerical analysis of FRP anchorage zones with variable width. Composites Part B: Engineering, 2014, 67, 410-426.	12.0	29

HUGO BISCAIA

#	Article	IF	CITATIONS
55	Composites and FRP-Strengthened Beams Subjected to Dry/Wet and Salt Fog Cycles. Journal of Materials in Civil Engineering, 2014, 26, .	2.9	25
56	Delamination process analysis of FRP-to-parent material bonded joints with and without anchorage systems using the Distinct Element Method. Composite Structures, 2014, 116, 104-119.	5.8	28
57	Experimental and numerical modeling of basalt textile reinforced mortar behavior under uniaxial tensile stress. Materials & Design, 2014, 55, 66-74.	5.1	144
58	On estimates of durability of FRP based on accelerated tests. Composite Structures, 2014, 116, 377-387.	5.8	76
59	Bond–slip on CFRP/GFRP-to-concrete joints subjected to moisture, salt fog and temperature cycles. Composites Part B: Engineering, 2013, 55, 374-385.	12.0	63
60	Modelling GFRP-to-concrete joints with interface finite elements with rupture based on the Mohr-Coulomb criterion. Construction and Building Materials, 2013, 47, 261-273.	7.2	31
61	Non-linear analytical model of composites based on basalt textile reinforced mortar under uniaxial tension. Composites Part B: Engineering, 2013, 55, 518-527.	12.0	65
62	Nonlinear numerical analysis of the debonding failure process of FRP-to-concrete interfaces. Composites Part B: Engineering, 2013, 50, 210-223.	12.0	60
63	A smeared crack analysis of reinforced concrete T-beams strengthened with GFRP composites. Engineering Structures, 2013, 56, 1346-1361.	5.3	21
64	Linear and nonlinear analysis of bond-slip models for interfaces between FRP composites and concrete. Composites Part B: Engineering, 2013, 45, 1554-1568.	12.0	84
65	Double shear tests to evaluate the bond strength between GFRP/concrete elements. Composite Structures, 2012, 94, 681-694.	5.8	38
66	Effects of exposure to saline humidity on bond between GFRP and concrete. Composite Structures, 2010, 93, 216-224.	5.8	23
67	Monotonic axial behavior and modelling of RC circular columns confined with CFRP. Engineering Structures, 2010, 32, 2268-2277.	5.3	120
68	Durability of GFRP strengthening under environmental degradation. IABSE Symposium Report, 2009, , .	0.0	1
69	Degradation of bond between FRP and RC beams. Composite Structures, 2008, 85, 164-174.	5.8	134
70	Old Suspended Timber Floors Flexurally-Strengthened with Different Structural Materials. Key Engineering Materials, 0, 713, 78-81.	0.4	3
71	A Finite Element Based Analysis of Double Strap Bonded Joints with CFRP and Aluminium. Key Engineering Materials, 0, 754, 237-240.	0.4	5
72	Cyclic Loading Behaviour of Double Strap Bonded Joints with CFRP and Aluminium. Key Engineering Materials, 0, 774, 36-41.	0.4	1