Claude Messier

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4689407/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Chronic sleep disruption induces depression-like behavior in adolescent male and female mice and sensitization of the hypothalamic-pituitary-adrenal axis in adolescent female mice. Behavioural Brain Research, 2021, 399, 113001.	1.2	15
2	Voluntary Behavior and Training Conditions Modulate in vivo Extracellular Glucose and Lactate in the Mouse Primary Motor Cortex. Frontiers in Neuroscience, 2021, 15, 732242.	1.4	2
3	Brain and muscle adaptation to high-fat diets and exercise: Metabolic transporters, enzymes and substrates in the rat cortex and muscle. Brain Research, 2020, 1749, 147126.	1.1	3
4	The impact of lactic acid and medium chain triglyceride on blood glucose, lactate and diurnal motor activity: A re-examination of a treatment of major depression using lactic acid. Physiology and Behavior, 2019, 208, 112569.	1.0	7
5	Fluctuations of extracellular glucose and lactate in the mouse primary visual cortex during visual stimulation. Behavioural Brain Research, 2018, 344, 91-102.	1.2	7
6	Utility of the Hebb–Williams Maze Paradigm for Translational Research in Fragile X Syndrome: A Direct Comparison of Mice and Humans. Frontiers in Molecular Neuroscience, 2018, 11, 99.	1.4	9
7	Unbiased stereological analysis of the fate of oligodendrocyte progenitor cells in the adult mouse brain and effect of reference memory training. Behavioural Brain Research, 2017, 329, 127-139.	1.2	7
8	Oligodendrocyte progenitor cells are paired with GABA neurons in the mouse dorsal cortex: Unbiased stereological analysis. Neuroscience, 2017, 362, 127-140.	1.1	24
9	Effects of Systemic Metabolic Fuels on Glucose and Lactate Levels in the Brain Extracellular Compartment of the Mouse. Frontiers in Neuroscience, 2017, 11, 7.	1.4	18
10	Doublecortin in Oligodendrocyte Precursor Cells in the Adult Mouse Brain. Frontiers in Neuroscience, 2017, 11, 143.	1.4	27
11	A TgCRND8 Mouse Model of Alzheimer's Disease Exhibits Sexual Dimorphisms inÂBehavioral Indices of Cognitive Reserve. Journal of Alzheimer's Disease, 2016, 51, 757-773.	1.2	30
12	A simple histological technique to improve immunostaining when using DNA denaturation for BrdU labelling. Journal of Neuroscience Methods, 2016, 259, 40-46.	1.3	7
13	2-Methyl-6-(phenylethynyl) pyridine (MPEP) reverses maze learning and PSD-95 deficits in Fmr1 knock-out mice. Frontiers in Cellular Neuroscience, 2014, 8, 70.	1.8	28
14	Voluntary Out-of-Body Experience: An fMRI Study. Frontiers in Human Neuroscience, 2014, 8, 70.	1.0	19
15	Translating the impact of exercise on cognition: Methodological issues in animal research. Behavioural Brain Research, 2014, 273, 177-188.	1.2	25
16	Visual–spatial learning impairments are associated with hippocampal PSD-95 protein dysregulation in a mouse model of fragile X syndrome. NeuroReport, 2014, 25, 255-261.	0.6	15
17	From precursors to myelinating oligodendrocytes: Contribution of intrinsic and extrinsic factors to white matter plasticity in the adult brain. Neuroscience, 2014, 269, 343-366.	1.1	88
18	Confirmatory Factor Analysis of the WAIS-IV and WMS-IV in Older Adults. Journal of Psychoeducational Assessment, 2013, 31, 375-390.	0.9	9

CLAUDE MESSIER

#	Article	IF	CITATIONS
19	Plastic changes in the astrocyte GLUT1 glucose transporter and beta-tubulin microtubule protein following voluntary exercise in mice. Behavioural Brain Research, 2013, 240, 95-102.	1.2	39
20	Predictors of Successful Communication With Interactive Voice Response Systems in Older People. Journals of Gerontology - Series B Psychological Sciences and Social Sciences, 2013, 68, 495-503.	2.4	12
21	Administration of Neuropsychological Tests Using Interactive Voice Response Technology in the Elderly: Validation and Limitations. Frontiers in Neurology, 2013, 4, 107.	1.1	5
22	Measuring the impact of exercise on cognitive aging: methodological issues. Neurobiology of Aging, 2012, 33, 622.e29-622.e43.	1.5	105
23	Snf2l Regulates Foxg1-Dependent Progenitor Cell Expansion in the Developing Brain. Developmental Cell, 2012, 22, 871-878.	3.1	60
24	Glucose regulation is associated with cognitive performance in young nondiabetic adults. Behavioural Brain Research, 2011, 222, 81-88.	1.2	21
25	Improving Older Adults' Experience with Interactive Voice Response Systems. Telemedicine Journal and E-Health, 2011, 17, 452-455.	1.6	20
26	A comparative study of the performance of individuals with fragile X syndrome and <i>Fmr1</i> knockout mice on Hebbâ€Williams mazes. Genes, Brain and Behavior, 2010, 9, 53-64.	1.1	20
27	Effect of age and glucoregulation on cognitive performance. Journal of Clinical and Experimental Neuropsychology, 2010, 32, 809-821.	0.8	30
28	Neurobehavioral effect of chronic and bolus doses of methylmercury following prenatal exposure in C57BL/6 weanling mice. Neurotoxicology and Teratology, 2009, 31, 372-381.	1.2	25
29	Neuroprotection and functional recovery conferred by administration of kappa- and delta1-opioid agonists in a rat model of global ischemia. Physiology and Behavior, 2008, 93, 502-511.	1.0	57
30	Food restriction attenuates ischemia-induced spatial learning and memory deficits despite extensive CA1 ischemic injury. Behavioural Brain Research, 2008, 187, 123-132.	1.2	50
31	The effects of a high-fat, high-fructose, and combination diet on learning, weight, and glucose regulation in C57BL/6 mice. Behavioural Brain Research, 2007, 178, 139-145.	1.2	72
32	Exploratory factor analysis of neuropsychological tests and their relationship to the Brown–Peterson task. Archives of Clinical Neuropsychology, 2006, 21, 733-739.	0.3	19
33	Longitudinal study of the effects of a high-fat diet on glucose regulation, hippocampal function, and cerebral insulin sensitivity in C57BL/6 mice. Behavioural Brain Research, 2006, 175, 374-382.	1.2	88
34	The Role of Insulin, Insulin Growth Factor, and Insulin-Degrading Enzyme in Brain Aging and Alzheimer's Disease. Neural Plasticity, 2005, 12, 311-328.	1.0	144
35	Longitudinal evaluation of memory performance and peripheral neuropathy in the Ins2C96Y Akita mice. Behavioural Brain Research, 2005, 157, 31-38.	1.2	49
36	Impact of impaired glucose tolerance and type 2 diabetes on cognitive aging. Neurobiology of Aging, 2005, 26, 26-30.	1.5	173

CLAUDE MESSIER

#	Article	IF	CITATIONS
37	Explicit and Objective Scoring Criteria for the Taylor Complex Figure Test. Journal of Clinical and Experimental Neuropsychology, 2004, 26, 405-415.	0.8	9
38	Addressing the Differences in Speed of Processing of the Intervening Calculation Task on the Modified Brown-Peterson Task. Applied Neuropsychology, 2004, 11, 103-106.	1.5	3
39	Glucose improvement of memory: a review. European Journal of Pharmacology, 2004, 490, 33-57.	1.7	287
40	The relationships between atherosclerosis, heart disease, type 2 diabetes and dementia. Neurological Research, 2004, 26, 567-572.	0.6	61
41	The Relationship between Impaired Glucose Tolerance, Type 2 Diabetes, and Cognitive Function. Journal of Clinical and Experimental Neuropsychology, 2004, 26, 1044-1080.	0.8	463
42	Diabetes, Alzheimer's disease and apolipoprotein genotype. Experimental Gerontology, 2003, 38, 941-946.	1.2	89
43	Effect of age and glucoregulation on cognitive performance. Neurobiology of Aging, 2003, 24, 985-1003.	1.5	110
44	Comparing the Rey and Taylor Complex Figures: A Test-Retest Study in Young and Older Adults. Journal of Clinical and Experimental Neuropsychology, 2003, 25, 878-890.	0.8	10
45	Impact of peripheral glucoregulation on memory Behavioral Neuroscience, 2002, 116, 691-702.	0.6	65
46	Infralimbic kappa opioid and muscarinic M1 receptor interactions in the concurrent modulation of anxiety and memory. Psychopharmacology, 2002, 160, 233-244.	1.5	89
47	Infralimbic muscarinic M1 receptors modulate anxiety-like behaviour and spontaneous working memory in mice. Psychopharmacology, 2001, 155, 58-68.	1.5	45
48	Methodological and conceptual issues in the use of the elevated plus-maze as a psychological measurement instrument of animal anxiety-like behavior. Neuroscience and Biobehavioral Reviews, 2001, 25, 275-286.	2.9	207
49	U-69,593 microinjection in the infralimbic cortex reduces anxiety and enhances spontaneous alternation memory in mice. Brain Research, 2000, 856, 259-280.	1.1	43
50	Ethological confirmatory factor analysis of anxiety-like behaviour in the murine elevated plus-maze. Behavioural Brain Research, 2000, 114, 199-212.	1.2	77
51	Concurrent modulation of anxiety and memory. Behavioural Brain Research, 2000, 109, 229-241.	1.2	47
52	Contribution of cholinergic and gabaergic functions to memory processes in BALB/cANnCrlBR mice1Published on the World Wide Web on 8 January 1999.1. Brain Research, 1999, 818, 583-592.	1.1	7
53	New Techniques in Stereotaxic Surgery and Anesthesia in the Mouse. Pharmacology Biochemistry and Behavior, 1999, 63, 313-318.	1.3	46
54	Effect of glucose, glucose regulation, and word imagery value on human memory Behavioral Neuroscience, 1999, 113, 431-438.	0.6	82

CLAUDE MESSIER

#	Article	IF	CITATIONS
55	Dose-dependent action of glucose on memory processes in women: effect on serial position and recall priority. Cognitive Brain Research, 1998, 7, 221-233.	3.3	50
56	Object Recognition in Mice: Improvement of Memory by Glucose. Neurobiology of Learning and Memory, 1997, 67, 172-175.	1.0	77
57	An Automatic Food Delivery System for Operant Training of Mice. Physiology and Behavior, 1997, 61, 879-882.	1.0	7
58	Blockade of Spontaneous Posttraining Performance Improvement in Mice by NMDA Antagonists. Pharmacology Biochemistry and Behavior, 1997, 56, 589-594.	1.3	8
59	Glucose regulation and cognitive functions: relation to Alzheimer's disease and diabetes. Behavioural Brain Research, 1996, 75, 1-11.	1.2	227
60	Glucose enhancement of scopolamine-induced increase of hippocampal high-affinity choline uptake in mice: relation to plasma glucose levels. Brain Research, 1995, 685, 99-104.	1.1	18
61	Repeated blood glucose measures using a novel portable glucose meter. Physiology and Behavior, 1995, 57, 807-811.	1.0	20
62	Insulin attenuates scopolamine-induced memory deficits. Cognitive, Affective and Behavioral Neuroscience, 1994, 22, 16-21.	1.2	27
63	Memory processing and apamin induce immediate early gene expression in mouse brain. Molecular Brain Research, 1993, 18, 17-22.	2.5	67
64	Raised glucose levels enhance scopolamine-induced acetylcholine overflow from the hippocampus: an in vivo microdialysis study in the rat. Behavioural Brain Research, 1992, 49, 181-188.	1.2	98
65	Locomotor bias produced by intra-accumbens injection of dopamine agonists and antagonists. Pharmacology Biochemistry and Behavior, 1992, 41, 177-182.	1.3	20
66	Bidirectional potentiation between D1 and D2 dopamine agonists: Effects of unilateral intra-accumbens injections on locomotor activity in mice. Life Sciences, 1991, 49, PL43-PL48.	2.0	10
67	Effect of apamin, a toxin that inhibits Ca2+-dependent K+ channels, on learning and memory processes. Brain Research, 1991, 551, 322-326.	1.1	115
68	Memory-improving action of glucose: indirect evidence for a facilitation of hippocampal acetylcholine synthesis. Behavioural Brain Research, 1990, 39, 135-143.	1.2	111
69	Improvement of memory for an operant response by post-training glucose in mice. Behavioural Brain Research, 1988, 31, 185-191.	1.2	69
70	Effects of adrenal demedullation on the conditioned emotional response and on the memory improving action of glucose Behavioral Neuroscience, 1988, 102, 499-503.	0.6	17
71	Memory improvement by glucose, fructose, and two glucose analogs: A possible effect on peripheral glucose transport. Behavioral and Neural Biology, 1987, 48, 104-127.	2.3	139
72	Operationalizing and Measuring the Organizing Influence of Drugs on Behavior. , 1987, , 591-617.		26

#	Article	IF	CITATIONS
73	Contingent and non-contingent actions of sucrose and saccharin reinforcers: Effects on taste preference and memory. Physiology and Behavior, 1984, 32, 195-203.	1.0	137