
David P Durkin

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/468897/publications.pdf Version: 2024-02-01

ΠΑΛΛΙΠ Ρ ΠΙΙΦΚΙΝΙ

#	Article	IF	CITATIONS
1	Visible-Light-Responsive Graphitic Carbon Nitride: Rational Design and Photocatalytic Applications for Water Treatment. Environmental Science & Technology, 2016, 50, 12938-12948.	10.0	261
2	Natural Fiber Welded Electrode Yarns for Knittable Textile Supercapacitors. Advanced Energy Materials, 2015, 5, 1401286.	19.5	152
3	Influence of Oxygen-Containing Functional Groups on the Environmental Properties, Transformations, and Toxicity of Carbon Nanotubes. Chemical Reviews, 2020, 120, 11651-11697.	47.7	84
4	Graphitic Carbon Nitride Supported Ultrafine Pd and Pd–Cu Catalysts: Enhanced Reactivity, Selectivity, and Longevity for Nitrite and Nitrate Hydrogenation. ACS Applied Materials & Interfaces, 2017, 9, 27421-27426.	8.0	54
5	Sustainable and scalable natural fiber welded palladium-indium catalysts for nitrate reduction. Applied Catalysis B: Environmental, 2018, 221, 290-301.	20.2	50
6	Mechanism of humic acid fouling in a photocatalytic membrane system. Journal of Membrane Science, 2018, 563, 531-540.	8.2	46
7	Impact of Silanization on the Structure, Dispersion Properties, and Biodegradability of Nanocellulose as a Nanocomposite Filler. ACS Applied Nano Materials, 2018, 1, 7025-7038.	5.0	38
8	3D printed photoreactor with immobilized graphitic carbon nitride: A sustainable platform for solar water purification. Journal of Hazardous Materials, 2020, 399, 123097.	12.4	37
9	Fe-based single-atom catalysis for oxidizing contaminants of emerging concern by activating peroxides. Journal of Hazardous Materials, 2021, 418, 126294.	12.4	34
10	Enhancement of Nitrite Reduction Kinetics on Electrospun Pd-Carbon Nanomaterial Catalysts for Water Purification. ACS Applied Materials & Interfaces, 2016, 8, 17739-17744.	8.0	32
11	Development of Electrospun Nanofibrous Filters for Controlling Coronavirus Aerosols. Environmental Science and Technology Letters, 2021, 8, 545-550.	8.7	30
12	Lignocellulose Fiber- and Welded Fiber- Supports for Palladium-Based Catalytic Hydrogenation: A Natural Fiber Welding Application for Water Treatment. ACS Sustainable Chemistry and Engineering, 2016, 4, 5511-5522.	6.7	29
13	Photocatalytic graphitic carbon nitride-chitosan composites for pathogenic biofilm control under visible light irradiation. Journal of Hazardous Materials, 2021, 408, 124890.	12.4	26
14	Phosphorus-functionalized multi-wall carbon nanotubes as flame-retardant additives for polystyrene and poly (methyl methacrylate). Journal of Thermal Analysis and Calorimetry, 2017, 130, 735-753.	3.6	25
15	Radical-Driven Decomposition of Graphitic Carbon Nitride Nanosheets: Light Exposure Matters. Environmental Science & Technology, 2021, 55, 12414-12423.	10.0	25
16	Mesoporous xerogel cellulose composites from biorenewable natural cotton fibers. Carbohydrate Polymers, 2022, 282, 119040.	10.2	17
17	With Anchors Aweigh, Synchronous Instruction Preferred by Naval Academy Instructors in Small Undergraduate Chemistry Classes. Journal of Chemical Education, 2020, 97, 2383-2388.	2.3	14
18	Copper release and transformation following natural weathering of nano-enabled pressure-treated lumber. Science of the Total Environment, 2019, 668, 234-244.	8.0	12

DAVID P DURKIN

#	Article	IF	CITATIONS
19	Pd Nanoparticle Catalysts Supported on Nitrogen-Functionalized Activated Carbon for Oxyanion Hydrogenation and Water Purification. ACS Applied Nano Materials, 2018, 1, 6580-6586.	5.0	10
20	Kinetics of ionic liquid-facilitated cellulose decrystallization by Raman spectral mapping. Cellulose, 2021, 28, 1321-1330.	4.9	10
21	Engineering Lignocellulose Fibers with Higher Thermal Stability through Natural Fiber Welding. Macromolecular Materials and Engineering, 2019, 304, 1900042.	3.6	8
22	Lignocellulose-stabilized iron-palladium nanomagnetic biocomposites. Journal of Magnetism and Magnetic Materials, 2020, 497, 165964.	2.3	8
23	Environmental application of chlorine-doped graphitic carbon nitride: Continuous solar-driven photocatalytic production of hydrogen peroxide. Journal of Hazardous Materials, 2022, 436, 129251.	12.4	8
24	Evaluating the Ion Transport of 1-Ethyl-3-Methylimidazolium Acetate Solutions Containing Carbohydrate Solutes. Journal of the Electrochemical Society, 2019, 166, H721-H729.	2.9	5
25	Integration of Functional Nanomaterials in Biopolymer Composites Using Ionic Liquid Based Methods. ECS Transactions, 2018, 86, 287-296.	0.5	4
26	Ion Dynamics and Transport Properties of Lewis-Acidic Imidazolium Chloroaluminate Ionic Liquids. Journal of the Electrochemical Society, 2021, 168, 066515.	2.9	4
27	Natural Fiber Welding. Green Chemistry and Sustainable Technology, 2020, , 211-226.	0.7	4
28	Photothermal actuation of levitated pyrolytic graphite revised. APL Materials, 2021, 9, 101107.	5.1	4
29	The Apparent Superionicity of Ionic Liquid Solutions Containing Cellulose. Journal of the Electrochemical Society, 2019, 166, H140-H145.	2.9	3
30	Antimicrobial Biocomposites Fiberâ€Welded with Lignocellulose Containing Silver Nanoparticles. Macromolecular Materials and Engineering, 2022, 307, .	3.6	3
31	Ionic Liquid Property Effects on the Natural Fiber Welding Process. ECS Transactions, 2018, 86, 249-255.	0.5	2
32	Preferential leaching of indium metal during room temperature ionic liquid processing of Pd–In nanoparticle-biopolymer composites. Materials Chemistry and Physics, 2020, 249, 123179.	4.0	2
33	Fiber-welded polyionic biocomposites using 1-alkyl-3-vinylimidazolium alkylphosphonate ionic liquids. Journal of Ionic Liquids, 2022, 2, 100024.	2.7	2
34	Evaluating the Effect of Applied Tension during Natural Fiber Welding of Lignocellulose Yarns. ECS Transactions, 2018, 86, 269-277.	0.5	1
35	Determining the Thermal Properties of Military Jet Fuel JP-5 and Surrogate Mixtures Using Differential Scanning Calorimetry/Thermogravimetric Analysis and Differential Scanning Calorimetry Methods. Energy & Fuels, 2020, 34, 4046-4054.	5.1	1
36	Charge Transport and Dynamics in Imidazolium Chloroaluminate Ionic Liquids. ECS Transactions, 2020, 98, 117-127.	0.5	1

#	Article	IF	CITATIONS
37	Developing Polyionic Biocomposite Materials through Natural Fiber Welding. ECS Transactions, 2020, 98, 99-113.	0.5	1
38	The Impact of Carbohydrate Solutes on the Ionicity of 1-Ethyl-3-Methylimidazolium Acetate Ionic Liquid Solutions. ECS Transactions, 2018, 86, 279-286.	0.5	0
39	Cellulose, Cellobiose, and Glucose Cause Similar Decreases to Molar Conductivity and Drastically Different Increases to Dynamic Viscosity of 1-Ethyl-3-Methylimidazoilum Acetate Based Solvents. ECS Transactions, 2018, 86, 257-268.	0.5	0