Touati Benoukraf

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4688766/publications.pdf

Version: 2024-02-01

45 papers 2,198 citations

304602 22 h-index 243529 44 g-index

51 all docs

51 docs citations

51 times ranked

4634 citing authors

#	Article	IF	CITATIONS
1	DNMT1-interacting RNAs block gene-specific DNA methylation. Nature, 2013, 503, 371-376.	13.7	446
2	H3K4 tri-methylation provides an epigenetic signature of active enhancers. EMBO Journal, 2011, 30, 4198-4210.	3.5	265
3	A unique H3K4me2 profile marks tissue-specific gene regulation. Genome Research, 2010, 20, 1493-1502.	2.4	117
4	Transposon mutagenesis identifies genes driving hepatocellular carcinoma in a chronic hepatitis B mouse model. Nature Genetics, 2014, 46, 24-32.	9.4	105
5	Whole genome DNA methylation: beyond genes silencing. Oncotarget, 2017, 8, 5629-5637.	0.8	105
6	Increased intron retention is a postâ€transcriptional signature associated with progressive aging and Alzheimer's disease. Aging Cell, 2019, 18, e12928.	3.0	80
7	Wanted DEAD/H or Alive: Helicases Winding Up in Cancers. Journal of the National Cancer Institute, 2017, 109, djw278.	3.0	79
8	NanoVar: accurate characterization of patients' genomic structural variants using low-depth nanopore sequencing. Genome Biology, 2020, 21, 56.	3.8	73
9	Hydrogel-based colorectal cancer organoid co-culture models. Acta Biomaterialia, 2021, 132, 461-472.	4.1	72
10	Methodological aspects of whole-genome bisulfite sequencing analysis. Briefings in Bioinformatics, 2015, 16, 369-379.	3.2	63
11	Generation of matched patient-derived xenograft inÂvitro-inÂvivo models using 3D macroporous hydrogels for the study of liver cancer. Biomaterials, 2018, 159, 229-240.	5.7	56
12	MethMotif: an integrative cell specific database of transcription factor binding motifs coupled with DNA methylation profiles. Nucleic Acids Research, 2019, 47, D145-D154.	6.5	52
13	NicE-seq: high resolution open chromatin profiling. Genome Biology, 2017, 18, 122.	3.8	45
14	ZNF143 mediates CTCF-bound promoter–enhancer loops required for murine hematopoietic stem and progenitor cell function. Nature Communications, 2021, 12, 43.	5.8	45
15	Loss of USP28-mediated BRAF degradation drives resistance to RAF cancer therapies. Journal of Experimental Medicine, 2018, 215, 1913-1928.	4.2	41
16	Disruption of the C/EBPÎ \pm â \in °miR-182 balance impairs granulocytic differentiation. Nature Communications, 2017, 8, 46.	5.8	38
17	î²-Catenin–TCF/LEF signaling promotes steady-state and emergency granulopoiesis via G-CSF receptor upregulation. Blood, 2020, 136, 2574-2587.	0.6	35
18	TIP60 represses activation of endogenous retroviral elements. Nucleic Acids Research, 2018, 46, 9456-9470.	6.5	33

#	Article	IF	CITATIONS
19	Lysine acetyltransferase Tip60 is required for hematopoietic stem cell maintenance. Blood, 2020, 136, 1735-1747.	0.6	33
20	GBSA: a comprehensive software for analysing whole genome bisulfite sequencing data. Nucleic Acids Research, 2013, 41, e55-e55.	6.5	31
21	Hepatocellular carcinoma organoid co-cultures mimic angiocrine crosstalk to generate inflammatory tumor microenvironment. Biomaterials, 2022, 284, 121527.	5.7	30
22	C/EBPα is required for development of dendritic cell progenitors. Blood, 2013, 121, 4073-4081.	0.6	28
23	TFregulomeR reveals transcription factors' context-specific features and functions. Nucleic Acids Research, 2020, 48, e10-e10.	6.5	27
24	CoCAS: a ChIP-on-chip analysis suite. Bioinformatics, 2009, 25, 954-955.	1.8	25
25	EVI2B is a C/EBP $\hat{l}\pm$ target gene required for granulocytic differentiation and functionality of hematopoietic progenitors. Cell Death and Differentiation, 2017, 24, 705-716.	5.0	25
26	Targeted Inhibition of Purine Metabolism Is Effective in Suppressing Hepatocellular Carcinoma Progression. Hepatology Communications, 2020, 4, 1362-1381.	2.0	22
27	Characterisation of Genome-Wide PLZF/RARA Target Genes. PLoS ONE, 2011, 6, e24176.	1.1	22
28	Pasha: a versatile R package for piling chromatin HTS data. Bioinformatics, 2016, 32, 2528-2530.	1.8	21
29	The basic helix-loop-helix transcription factor SHARP1 is an oncogenic driver in MLL-AF6 acute myelogenous leukemia. Nature Communications, 2018, 9, 1622.	5.8	20
30	Hematopoietic stem cells acquire survival advantage by loss of RUNX1 methylation identified in familial leukemia. Blood, 2020, 136, 1919-1932.	0.6	20
31	Initiation of V(D)J Recombination by $D\hat{l}^2$ -Associated Recombination Signal Sequences: A Critical Control Point in TCR \hat{l}^2 Gene Assembly. PLoS ONE, 2009, 4, e4575.	1.1	17
32	Assessing the efficiency and significance of Methylated DNA Immunoprecipitation (MeDIP) assays in using in vitro methylated genomic DNA. BMC Research Notes, 2010, 3, 240.	0.6	17
33	Phosphorylation of Tet3 by cdk5 is critical for robust activation of BRN2 during neuronal differentiation. Nucleic Acids Research, 2020, 48, 1225-1238.	6.5	14
34	Duality of Enhancer Functioning Mode Revealed in a Reduced TCRÎ ² Gene Enhancer Knockin Mouse Model. Journal of Immunology, 2009, 183, 7939-7948.	0.4	13
35	The gene signature in CCAAT-enhancer-binding protein dysfunctional acute myeloid leukemia predicts responsiveness to histone deacetylase inhibitors. Haematologica, 2014, 99, 697-705.	1.7	13
36	A chemical biology approach reveals a dependency of glioblastoma on biotin distribution. Science Advances, 2021, 7, eabf6033.	4.7	10

#	Article	IF	CITATIONS
37	LPS independent activation of the pro-inflammatory receptor Trem1 by C/EBPε in granulocytes. Scientific Reports, 2017, 7, 46440.	1.6	9
38	E2F and STAT3 provide transcriptional synergy for histone variant H2AZ activation to sustain glioblastoma chromatin accessibility and tumorigenicity. Cell Death and Differentiation, 2022, 29, 1379-1394.	5.0	9
39	Feasibility of Low-Throughput Next Generation Sequencing for Germline DNA Screening. Clinical Chemistry, 2014, 60, 1549-1557.	1.5	7
40	Autosomal dominant non-syndromic hearing loss maps to DFNA33 (13q34) and co-segregates with splice and frameshift variants in ATP11A, a phospholipid flippase gene. Human Genetics, 2022, 141, 431-444.	1.8	7
41	Acquired resistance to combination treatment through loss of synergy with MEK and PI3K inhibitors in colorectal cancer. Oncotarget, 2016, 7, 29187-29198.	0.8	4
42	Datasets describing the growth and molecular features of hepatocellular carcinoma patient-derived xenograft cells grown in a three-dimensional macroporous hydrogel. Data in Brief, 2018, 18, 594-606.	0.5	3
43	miREM: an expectation-maximization approach for prioritizing miRNAs associated with gene-set. BMC Bioinformatics, 2018, 19, 299.	1.2	3
44	Processing ChIP-Chip Data: From the Scanner to the Browser. Methods in Molecular Biology, 2011, 719, 251-268.	0.4	2
45	Î'-Catenin-Tcf/Lef Signaling Promotes Steady State and Emergency Granulopoiesis through G-CSF Receptor Upregulation. Blood, 2019, 134, 1193-1193.	0.6	O