Joanna Ortyl

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4688725/publications.pdf

Version: 2024-02-01

59	1,461 citations	236912 25 h-index	361001 35 g-index
papers	citations	II-IIIQEX	g-mdex
59 all docs	59 docs citations	59 times ranked	591 citing authors

#	Article	IF	Citations
1	Water-Soluble Photoinitiators in Biomedical Applications. Polymers, 2020, 12, 1073.	4.5	131
2	Specific cationic photoinitiators for near UV and visible LEDs: lodonium versus ferrocenium structures. Journal of Applied Polymer Science, 2015, 132, .	2.6	81
3	A New Approach to Micromachining: High-Precision and Innovative Additive Manufacturing Solutions Based on Photopolymerization Technology. Materials, 2020, 13, 2951.	2.9	55
4	Photopolymerization of hybrid monomers. Polymer Testing, 2017, 64, 313-320.	4.8	50
5	Moving Towards a Finer Way of Light-Cured Resin-Based Restorative Dental Materials: Recent Advances in Photoinitiating Systems Based on Iodonium Salts. Materials, 2020, 13, 4093.	2.9	46
6	New kinetic and mechanistic aspects of photosensitization of iodonium salts in photopolymerization of acrylates. RSC Advances, 2017, 7, 41619-41629.	3.6	44
7	New, highly versatile bimolecular photoinitiating systems for free-radical, cationic and thiol–ene photopolymerization processes under low light intensity UV and visible LEDs for 3D printing application. RSC Advances, 2020, 10, 7509-7522.	3.6	42
8	New bimolecular photoinitiating systems based on terphenyl derivatives as highly efficient photosensitizers for 3D printing application. Polymer Chemistry, 2020, 11, 922-935.	3.9	41
9	Photoinitiator-catalyst systems based on <i>meta </i> -terphenyl derivatives as photosensitisers of iodonium and thianthrenium salts for visible photopolymerization in 3D printing processes. Polymer Chemistry, 2020, 11, 4604-4621.	3.9	40
10	One-component cationic photoinitiators based on coumarin scaffold iodonium salts as highly sensitive photoacid generators for 3D printing IPN photopolymers under visible LED sources. Polymer Chemistry, 2020, 11, 5261-5278.	3.9	39
11	Photochemical Study of a New Bimolecular Photoinitiating System for Vat Photopolymerization 3D Printing Techniques under Visible Light. Catalysts, 2020, 10, 284.	3.5	37
12	New photoinitiators for cationic polymerization. Polimery, 2012, 57, 510-517.	0.7	36
13	<i>Meta</i> -Terphenyl Derivative/Iodonium Salt/9H-Carbazole-9-ethanol Photoinitiating Systems for Free Radical Promoted Cationic Polymerization upon Visible Lights. Macromolecular Chemistry and Physics, 2016, 217, 1955-1965.	2.2	34
14	Development of the first panchromatic BODIPY-based one-component iodonium salts for initiating the photopolymerization processes. Polymer Chemistry, 2021, 12, 6873-6893.	3.9	34
15	Relative sensitization efficiency of fluorescent probes/sensitizers for monitoring and acceleration of cationic photopolymerization of monomers. Polymer Testing, 2015, 48, 151-159.	4.8	33
16	New versatile bimolecular photoinitiating systems based on amino- <i>m</i> -terphenyl derivatives for cationic, free-radical and thiol–ene photopolymerization under low intensity UV-A and visible light sources. Polymer Chemistry, 2020, 11, 480-495.	3.9	32
17	Aminophthalimide probes for monitoring of cationic photopolymerization by fluorescence probe technology and their effect on the polymerization kinetics. Polymer Testing, 2012, 31, 466-473.	4.8	31
18	Photoinitiating systems and kinetics of frontal photopolymerization processes – the prospects for efficient preparation of composites and thick 3D structures. Polymer Chemistry, 2021, 12, 4593-4612.	3.9	31

#	Article	IF	Citations
19	Performance of amidocoumarins as probes for monitoring of cationic photopolymerization of monomers by fluorescence probe technology. Journal of Polymer Science Part A, 2010, 48, 4522-4528.	2.3	30
20	Squarylium dye and onium salts as highly sensitive photoradical generators for blue light. Polymer Chemistry, 2017, 8, 3464-3474.	3.9	30
21	Photopolymerization of hybrid monomers, Part II: Determination of relative quantum efficiency of selected photoinitiators in cationic and free-radical polymerization of hybrid monomers. Polymer Testing, 2018, 67, 144-150.	4.8	30
22	Mechanism of interaction of coumarin-based fluorescent molecular probes with polymerizing medium during free radical polymerization of a monomer. Polymer Testing, 2016, 55, 310-317.	4.8	29
23	Application of a carbazole derivative as a spectroscopic fluorescent probe for real time monitoring of cationic photopolymerization. Polish Journal of Chemical Technology, 2014, 16, 75-80.	0.5	28
24	Applicability of aminophthalimide probes for monitoring and acceleration of cationic photopolymerization of epoxides. Polymer Testing, 2013, 32, 708-715.	4.8	27
25	Applicability of quinolizino-coumarins for monitoring free radical photopolymerization by fluorescence spectroscopy. Polymer Testing, 2015, 42, 99-107.	4.8	27
26	Acrylic Pressure-Sensitive Adhesives Containing SiO ₂ Nanoparticles. Polish Journal of Chemical Technology, 2013, 15, 12-14.	0.5	25
27	The Applicability of 2-amino-4,6-diphenyl-pyridine-3-carbonitrile Sensors for Monitoring Different Types of Photopolymerization Processes and Acceleration of Cationic and Free-Radical Photopolymerization Under Near UV Light. Sensors, 2019, 19, 1668.	3.8	25
28	Thioxanthone Derivatives as a New Class of Organic Photocatalysts for Photopolymerisation Processes and the 3D Printing of Photocurable Resins under Visible Light. Catalysts, 2020, 10, 903.	3.5	25
29	Pyrylium salt as a visible-light-induced photoredox catalyst for polymer and organic synthesis – Perspectives on catalyst design and performance. European Polymer Journal, 2021, 150, 110365.	5.4	25
30	One-Component Cationic Photoinitiators from Tunable Benzylidene Scaffolds for 3D Printing Applications. Macromolecules, 2021, 54, 7070-7087.	4.8	22
31	Applicability of samarium(III) complexes for the role of luminescent molecular sensors for monitoring progress of photopolymerization processes and control of the thickness of polymer coatings. Spectrochimica Acta - Part A: Molecular and Biomolecular Spectroscopy, 2018, 199, 430-440.	3.9	21
32	The performance of 7â€hydroxycoumarinâ€3â€carbonitrile and 7â€hydroxycoumarinâ€3â€carboxylic acid as fluorescent probes for monitoring of cationic photopolymerization processes by FPT. Journal of Applied Polymer Science, 2013, 128, 1974-1978.	2.6	20
33	Mechanism of interaction of aminocoumarins with reaction medium during cationic photopolymerization of triethylene glycol divinyl ether. European Polymer Journal, 2019, 116, 45-55.	5.4	20
34	Multifunctional biphenyl derivatives as photosensitisers in various types of photopolymerization processes, including IPN formation, 3D printing of photocurable multiwalled carbon nanotubes (MWCNTs) fluorescent composites. RSC Advances, 2020, 10, 32162-32182.	3.6	20
35	New horizons for carbon dots: quantum nano-photoinitiating catalysts for cationic photopolymerization and three-dimensional (3D) printing under visible light. Polymer Chemistry, 2021, 12, 3661-3676.	3.9	19
36	Development of New High-Performance Biphenyl and Terphenyl Derivatives as Versatile Photoredox Photoinitiating Systems and Their Applications in 3D Printing Photopolymerization Processes. Catalysts, 2019, 9, 827.	3.5	18

#	Article	lF	CITATIONS
37	Europium-based luminescent sensors for mapping pressure distribution on surfaces. Sensors and Actuators B: Chemical, 2020, 305, 127409.	7.8	17
38	Molecular interactions of bovine serum albumin (BSA) with pyridine derivatives as candidates for non-covalent protein probes: a spectroscopic investigation. Journal of Molecular Liquids, 2022, 347, 118262.	4.9	17
39	Double Role of Diphenylpyridine Derivatives as Fluorescent Sensors for Monitoring Photopolymerization and the Determination of the Efficiencies of the Generation of Superacids by Cationic Photoinitiators. Sensors, 2020, 20, 3043.	3.8	15
40	Visible-Light Amine Thioxanthone Derivatives as Photoredox Catalysts for Photopolymerization Processes. ACS Applied Polymer Materials, 2021, 3, 5547-5558.	4.4	14
41	Applicability of 1,6-Diphenylquinolin-2-one Derivatives as Fluorescent Sensors for Monitoring the Progress of Photopolymerisation Processes and as Photosensitisers for Bimolecular Photoinitiating Systems. Polymers, 2019, 11, 1756.	4.5	13
42	Difunctional 1H-quinolin-2-ones as spectroscopic fluorescent probes for real-time monitoring of photopolymerisation process and photosensitizers of fluorescent photopolymer resin in 3D printing. European Polymer Journal, 2021, 156, 110612.	5.4	13
43	Waterâ€Soluble Photoinitiators from Dimethylaminoâ€Substituted Monoacylphosphine Oxide for Hydrogel and Latex Preparation. Macromolecular Chemistry and Physics, 2021, 222, 2100217.	2.2	13
44	Visible light-induced photopolymerization of Deep Eutectic Monomers, based on methacrylic acid and tetrabutylammonium salts with different anion structures. European Polymer Journal, 2021, 161, 110836.	5.4	12
45	Harnessing light to create functional, three-dimensional polymeric materials: multitasking initiation systems as the critical key to success. Additive Manufacturing, 2021, 48, 102447.	3.0	12
46	Fluorescence assay for the determination of glutathione based on a ring-fused 2-pyridone derivative in dietary supplements. Analyst, The, 2021, 146, 1897-1906.	3.5	10
47	Selective Cytotoxicity of Complexes with N,N,N-Donor Dipodal Ligand in Tumor Cells. International Journal of Molecular Sciences, 2021, 22, 1802.	4.1	10
48	Non-destructive visual inspection of photocurable coatings based on fluorescent response of naked-eye visible colorimetric and fluorescent sensors. European Polymer Journal, 2021, 160, 110802.	5.4	8
49	Beneficial stilbene-based derivatives: From the synthesis of new catalytic photosensitizer to 3D printouts and fiber-reinforced composites. European Polymer Journal, 2021, 156, 110603.	5.4	7
50	Novel Effective Photoinitiators for the Production of Dental Fillings. Journal of Photopolymer Science and Technology = [Fotoporima Konwakai Shi], 2021, 34, 259-262.	0.3	7
51	Applicability of 7-hydroxy-4-methylcoumarin for cure monitoring and marking of epoxy resins. Polimery, 2010, 55, 539-544.	0.7	5
52	Quantitative interpretation of the response of Solvent-Quenched Pressure Sensitive Paints (SQ-PSPs) to pressure. Measurement: Journal of the International Measurement Confederation, 2021, 177, 109233.	5.0	3
53	Emerging waste-free non-destructive system based on molecular sensors originating from novel europium complexes for in-situ determination of polymer coating thickness. Progress in Organic Coatings, 2021, 160, 106527.	3.9	3
54	Pyridine derivatives as candidates for selective and sensitive fluorescent biosensors for lung cancer cell imaging and iron ions detection. Dyes and Pigments, 2022, 200, 110171.	3.7	3

#	Article	IF	CITATIONS
55	Phytochemical Molecules from the Decarboxylation of Gomphrenins in Violet Gomphrena globosa L.—Floral Infusions from Functional Food. International Journal of Molecular Sciences, 2020, 21, 8834.	4.1	1
56	New Fluorescent Molecular Probes for Monitoring of Very Fast Photopolymerization Processes of Monomers. Proceedings (mdpi), 2017, 1, 851.	0.2	0
57	Luminescent Molecular Chemosensors for Rapid and Nondestructive Detection of Thickness of Polymer Coatings. Proceedings (mdpi), 2017, 1 , .	0.2	O
58	Spectroscopic study of applicability of imidazo[1,2-a]pyridines for monitoring photopolymerization processes by fluorescence probe technique Spektroskopowe badania przydatnoŷci pochodnych imidazo[1,2-a]-pirydyny do monitorowania procesów fotopolimeryzacji przy wykorzystaniu czujników fluorescencyjnych. Przemysl Chemiczny, 2016, 1, 231-239.	0.0	0
59	MICROWAVE-ASSISTED SYNTHESIS AND SPECTROSCOPIC PROPERTIES OF NOVEL PYRIDINE-BASED FLUORESCENT MOLECULAR PROBES., 0,,.		0