
List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4688563/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Does the DNA barcoding gap exist? – a case study in blue butterflies (Lepidoptera: Lycaenidae). Frontiers in Zoology, 2007, 4, 8.	0.9	405
2	Disentangling a rainforest food web using stable isotopes: dietary diversity in a species-rich ant community. Oecologia, 2003, 137, 426-435.	0.9	268
3	Preferences for sugars and amino acids and their conditionality in a diverse nectar-feeding ant community. Journal of Animal Ecology, 2004, 73, 155-166.	1.3	201
4	Bottom-up control and co-occurrence in complex communities: honeydew and nectar determine a rainforest ant mosaic. Oikos, 2004, 106, 344-358.	1.2	196
5	Global warming, elevational ranges and the vulnerability of tropical biota. Biological Conservation, 2011, 144, 548-557.	1.9	185
6	Shifts in species richness, herbivore specialization, and plant resistance along elevation gradients. Ecology and Evolution, 2012, 2, 1818-1825.	0.8	148
7	COMPETITION FOR COMPOSITION: LESSONS FROM NECTAR-FEEDING ANT COMMUNITIES. Ecology, 2004, 85, 1479-1485.	1.5	146
8	From forest to farmland: diversity of geometrid moths along two habitat gradients on Borneo. Journal of Tropical Ecology, 2002, 18, 33-51.	0.5	137
9	Sugar and amino acid composition of ant-attended nectar and honeydew sources from an Australian rainforest. Austral Ecology, 2004, 29, 418-429.	0.7	137
10	Sex-related differences in reaction norms in the butterfly Lycaena tityrus (Lepidoptera: Lycaenidae). Oikos, 2000, 90, 372-380.	1.2	126
11	Title is missing!. Plant Ecology, 2001, 153, 133-152.	0.7	119
12	Unique elevational diversity patterns of geometrid moths in an Andean montane rainforest. Ecography, 2003, 26, 456-466.	2.1	117
13	Attraction to light - from how far do moths (Lepidoptera) return to weak artificial sources of light?. European Journal of Entomology, 2012, 109, 77-84.	1.2	111
14	Response of the copper butterfly Lycaena tityrus to increased leaf nitrogen in natural food plants: evidence against the nitrogen limitation hypothesis. Oecologia, 2000, 124, 235-241.	0.9	94
15	Mud-puddling behavior in tropical butterflies: in search of proteins or minerals?. Oecologia, 1999, 119, 140-148.	0.9	93
16	Montane Andean rain forests are a global diversity hotspot of geometrid moths. Journal of Biogeography, 2005, 32, 1621-1627.	1.4	91
17	Determinants of diversity in afrotropical herbivorous insects (Lepidoptera: Geometridae): plant diversity, vegetation structure or abiotic factors?. Journal of Biogeography, 2009, 36, 337-349.	1.4	91
18	Beta diversity of geometrid moths (Lepidoptera: Geometridae) in an Andean montane rainforest. Diversity and Distributions, 2003, 9, 351-366.	1.9	84

#	Article	IF	CITATIONS
19	Elevational species richness gradients in a hyperdiverse insect taxon: a global metaâ€study on geometrid moths. Global Ecology and Biogeography, 2017, 26, 412-424.	2.7	83
20	Dimorphic growth patterns and sex-specific reaction norms in the butterfly Lycaena hippothoe sumadiensis. Journal of Evolutionary Biology, 2001, 14, 210-218.	0.8	79
21	Evaluation of circulating cathodic antigen (CCA) urine-cassette assay as a survey tool for Schistosoma mansoni in different transmission settings within Bugiri District, Uganda. Acta Tropica, 2014, 136, 50-57.	0.9	78
22	Disturbance effects on diversity of epiphytes and moths in a montane forest in Ecuador. Basic and Applied Ecology, 2008, 9, 4-12.	1.2	77
23	Diversity and composition of Arctiidae moth ensembles along a successional gradient in the Ecuadorian Andes. Diversity and Distributions, 2005, 11, 387-398.	1.9	75
24	Midpoint attractors and species richness: Modelling the interaction between environmental drivers and geometric constraints. Ecology Letters, 2016, 19, 1009-1022.	3.0	75
25	Host-plant-derived variation in ultraviolet wing patterns influences mate selection by male butterflies. Journal of Experimental Biology, 2001, 204, 2447-2459.	0.8	70
26	Faunal composition of geometrid moths changes with altitude in an Andean montane rain forest. Journal of Biogeography, 2003, 30, 431-440.	1.4	69
27	Bergmann's rule does not apply to geometrid moths along an elevational gradient in an Andean montane rain forest. Global Ecology and Biogeography, 2004, 13, 7-14.	2.7	69
28	Diversity of geometrid moths (Lepidoptera: Geometridae) along an Afrotropical elevational rainforest transect. Diversity and Distributions, 2004, 10, 293-302.	1.9	69
29	Butterflies and ants: The communicative domain. Experientia, 1996, 52, 14-24.	1.2	68
30	Interactions between weaver ants Oecophylla smaragdina, homopterans, trees and lianas in an Australian rain forest canopy. Journal of Animal Ecology, 2002, 71, 793-801.	1.3	68
31	Reaction norms for age and size at maturity in response to temperature: a test of the compound interest hypothesis. Evolutionary Ecology, 2002, 16, 333-349.	0.5	65
32	Resource-based territoriality in the butterfly Lycaena hippothoe and environmentally induced behavioural shifts. Animal Behaviour, 2001, 61, 723-732.	0.8	64
33	Physiological costs of growing fast: does accelerated growth reduce pay-off in adult fitness?. Evolutionary Ecology, 2005, 18, 343-353.	0.5	64
34	Turning Up the Heat on a Hotspot: DNA Barcodes Reveal 80% More Species of Geometrid Moths along an Andean Elevational Gradient. PLoS ONE, 2016, 11, e0150327.	1.1	61
35	Functional analysis of the myrmecophilous relationships between ants (Hymenoptera: Formicidae) and lycaenids (Lepidoptera: Lycaenidae). Oecologia, 1988, 75, 204-206.	0.9	60
36	Sequestration of lichen compounds by lichen-feeding members of the Arctiidae (Lepidoptera). Journal of Chemical Ecology, 1995, 21, 2079-2089.	0.9	57

#	Article	IF	CITATIONS
37	Diversity and trait composition of moths respond to land-use intensification in grasslands: generalists replace specialists. Biodiversity and Conservation, 2017, 26, 3385-3405.	1.2	57
38	DNA barcoding-based species delimitation increases species count of Eois (Geometridae) moths in a well-studied tropical mountain forest by up to 50%. Insect Science, 2011, 18, 349-362.	1.5	56
39	Stable N-isotope signatures of central European ants – assessing positions in a trophic gradient. Insectes Sociaux, 2007, 54, 393-402.	0.7	55
40	Climatic and edaphic controls over tropical forest diversity and vegetation carbon storage. Scientific Reports, 2020, 10, 5066.	1.6	55
41	The symbiosis between the weaver ant,Oecophylla smaragdina, andAnthene emolus, an obligate myrmecophilous lycaenid butterfly. Journal of Natural History, 1989, 23, 833-846.	0.2	52
42	Sexual differences in life-history traits in the butterfly Lycaena tityrus: a comparison between direct and diapause development. Entomologia Experimentalis Et Applicata, 2001, 100, 325-330.	0.7	52
43	A comparative analysis of morphological and ecological characters of European aphids and lycaenids in relation to ant attendance. Oecologia, 2003, 135, 422-430.	0.9	52
44	Diet breadth and host plant diversity of tropical- vs. temperate-zone herbivores: South-East Asian and West Palaearctic butterflies as a case study. Ecological Entomology, 1998, 23, 285-297.	1.1	50
45	Ants that associate with Lycaeninae butterfly larvae: diversity, ecology and biogeography. Diversity and Distributions, 2001, 7, 45-60.	1.9	50
46	Diverging diversity patterns of vascular plants and geometrid moths during forest regeneration on Mt Kilimanjaro, Tanzania. Journal of Biogeography, 2004, 31, 895-904.	1.4	50
47	Title is missing!. Journal of Insect Conservation, 1998, 2, 3-14.	0.8	49
48	Seasonal shifts of biodiversity patterns and species' elevation ranges of butterflies and moths along a complete rainforest elevational gradient on Mount Cameroon. Journal of Biogeography, 2020, 47, 342-354.	1.4	49
49	Sequestration of host-plant-derived flavonoids by lycaenid butterflyPolyommatus icarus. Journal of Chemical Ecology, 1994, 20, 2523-2538.	0.9	48
50	The dark side of Lepidoptera: Colour lightness of geometrid moths decreases with increasing latitude. Global Ecology and Biogeography, 2018, 27, 407-416.	2.7	48
51	Management of roadside populations of invasive <i><scp>A</scp>mbrosia artemisiifolia</i> by mowing. Weed Research, 2014, 54, 256-264.	0.8	47
52	Flavonoid sequestration by the common blue butterfly Polyommatus icarus: quantitative intraspecific variation in relation to larval hostplant, sex and body size. Biochemical Systematics and Ecology, 2001, 29, 875-889.	0.6	45
53	Ordinating tropical moth ensembles from an elevational gradient: a comparison of common methods. Journal of Tropical Ecology, 2004, 20, 165-172.	0.5	45
54	Assessing ant assemblages: pitfall trapping versus nest counting (Hymenoptera, Formicidae). Insectes Sociaux, 2006, 53, 274-281.	0.7	45

#	Article	IF	CITATIONS
55	Ants andPolyommatus icarus immatures (Lycaenidae) —sex-related developmental benefits and costs of ant attendance. Oecologia, 1992, 91, 468-473.	0.9	43
56	The influence of ants on patterns of colonization and establishment within a set of coexisting lycaenid butterflies in a south-east Asian tropical rain forest. Oecologia, 1996, 106, 127-136.	0.9	43
57	Caterpillars and Host Plant Records for 59 Species of Geometridae (Lepidoptera) from a Montane Rainforest in Southern Ecuador. Journal of Insect Science, 2010, 10, 1-22.	0.6	43
58	Arctiid moth ensembles along a successional gradient in the Ecuadorian montane rain forest zone: how different are subfamilies and tribes?. Journal of Biogeography, 2006, 33, 108-120.	1.4	42
59	Flavonoid wing pigments increase attractiveness of female common blue (Polyommatus icarus) butterflies to mate-searching males. Die Naturwissenschaften, 2000, 87, 304-307.	0.6	41
60	DNA Barcode Sequencing from Old Type Specimens as a Tool in Taxonomy: A Case Study in the Diverse Genus Eois (Lepidoptera: Geometridae). PLoS ONE, 2012, 7, e49710.	1.1	40
61	Title is missing!. Journal of Insect Behavior, 2001, 14, 231-245.	0.4	39
62	Sequestration and distribution of flavonoids in the common blue butterfly Polyommatus icarus reared on Trifolium repens. Phytochemistry, 1999, 51, 609-614.	1.4	38
63	Thermal Gains Through Collective Metabolic Heat Production in Social Caterpillars of Eriogaster lanestris. Die Naturwissenschaften, 2000, 87, 193-196.	0.6	38
64	Phylogenetic diversity of geometrid moths decreases with elevation in the tropical Andes. Ecography, 2013, 36, 1247-1253.	2.1	36
65	Costs and benefits for phytophagous myrmecophiles: when ants are not always available. Oikos, 2001, 92, 467-478.	1.2	35
66	Diversity and ensemble composition of geometrid moths along a successional gradient in the Ecuadorian Andes. Journal of Tropical Ecology, 2006, 22, 155-166.	0.5	35
67	Use of forest strata by bats in temperate forests. Journal of Zoology, 2012, 286, 154-162.	0.8	35
68	Forest Modification Affects Diversity (But Not Dynamics) of Speciose Tropical Pyraloid Moth Communities. Biotropica, 2004, 36, 615-627.	0.8	34
69	Nutrient Composition of Larval Nectar Secretions from Three Species of Myrmecophilous Butterflies. Journal of Chemical Ecology, 2005, 31, 2805-2821.	0.9	34
70	Links between the Environment, Abundance and Diversity of Andean Moths. Biotropica, 2011, 43, 208-217.	0.8	34
71	Lycaenid butterflies and plants: is myrmecophily associated with particular hostplant preferences?. Ethology Ecology and Evolution, 1995, 7, 107-132.	0.6	32
72	Adult life spans of butterflies (Lepidoptera: Papilionoidea + Hesperioidea): broadscale contingencies with adult and larval traits in multi-species comparisons. Biological Journal of the Linnean Society, 0, 96, 166-184.	0.7	32

KONRAD FIEDLER

#	Article	IF	CITATIONS
73	Functional Analysis of the Myrmecophilous Relationships between Ants (Hymenoptera: Formicidae) and Lycaenids (Lepidoptera: Lycaenidae). Ethology, 1989, 80, 71-80.	0.5	32
74	Egg weight variation in the butterfly Lycaena hippothoe: more small or fewer large eggs?. Population Ecology, 2001, 43, 105-109.	0.7	31
75	Remote sensing improves prediction of tropical montane species diversity but performance differs among taxa. Ecological Indicators, 2017, 83, 538-549.	2.6	31
76	Diversity and community structure of geometrid moths of disturbed habitat in a montane area in the Ecuadorian Andes. The Journal of Research on the Lepidoptera, 2005, 38, 1-14.	0.1	31
77	Ants benefit from attending facultatively myrmecophilous Lycaenidae caterpillars: evidence from a survival study. Oecologia, 1995, 104, 316-322.	0.9	30
78	Molecular phylogeny of Eois (Lepidoptera, Geometridae): evolution of wing patterns and host plant use in a species-rich group of Neotropical moths. Zoologica Scripta, 2010, 39, 603-620.	0.7	30
79	Einfluß einer larvalen Hungerperiode auf Imaginaleigenschaften bei der Schmetterlingsart Lycaena tityrus (Lepidoptera: Lycaenidae). Entomologia Generalis, 2001, 25, 249-254.	1.1	30
80	How to evaluate and reduce sampling effort for ants. Journal of Insect Conservation, 2011, 15, 547-559.	0.8	29
81	Day vs. night predation on artificial caterpillars in primary rainforest habitats – an experimental approach. Entomologia Experimentalis Et Applicata, 2016, 158, 54-59.	0.7	29
82	Lycaenid butterflies and plants: is myrmecophily associated with amplified hostplant diversity?. Ecological Entomology, 1994, 19, 79-82.	1.1	28
83	The influence of diet on growth and secretion behaviour of myrmecophilous Polyommatus icarus caterpillars (Lepidoptera: Lycaenidae). Ecological Entomology, 1996, 21, 1-8.	1.1	28
84	Hostâ€plant relationships of lycaenid butterflies: largeâ€scale patterns, interactions with plant chemistry, and mutualism with ants. Entomologia Experimentalis Et Applicata, 1996, 80, 259-267.	0.7	28
85	Mobility of ringlet butterflies in high-elevation alpine grassland: effects of habitat barriers, resources and age. Journal of Insect Conservation, 2014, 18, 1153-1161.	0.8	27
86	Effects of larval diet on myrmecophilous qualities of Polyommatus icarus caterpillars (Lepidoptera:) Tj ETQq0 0 0	rgBT/Ov	erlock 10 Tf 5
87	Sequestration and Metabolism of Host-Plant Flavonoids by the Lycaenid Butterfly Polyommatus bellargus. Journal of Chemical Ecology, 1997, 23, 1361-1372.	0.9	26
88	Tent-based thermoregulation in social caterpillars of Eriogaster lanestris (Lepidoptera:) Tj ETQq0 0 0 rgBT /Overlo 2002, 27, 493-501.	ock 10 Tf : 1.1	50 147 Td (La 26
89	Predation on artificial caterpillars is higher in countryside than near-natural forest habitat in lowland south-western Costa Rica. Journal of Tropical Ecology, 2015, 31, 281-284.	0.5	26
90	Transmission of fungal partners to incipient Cecropia-tree ant colonies. PLoS ONE, 2018, 13, e0192207.	1.1	26

#	Article	IF	CITATIONS
91	Larvae of lycaenid butterflies that parasitize ant colonies provide exceptions to normal insect growth rules. Biological Journal of the Linnean Society, 2001, 73, 259-278.	0.7	25
92	Skipper Richness (Hesperiidae) Along Elevational Gradients in Brazilian Atlantic Forest. Neotropical Entomology, 2014, 43, 27-38.	0.5	25
93	Moths are strongly attracted to ultraviolet and blue radiation. Insect Conservation and Diversity, 2021, 14, 188-198.	1.4	25
94	Temporal Dynamics of Rich Moth Ensembles in the Montane Forest Zone in Southern Ecuador. Biotropica, 2007, 39, 94-104.	0.8	24
95	Ant-cultivated Chaetothyriales in hollow stems of myrmecophytic Cecropia sp. trees – diversity and patterns. Fungal Ecology, 2016, 23, 131-140.	0.7	24
96	European and North West African Lycaenidae (Lepidoptera) and their associations with ants. The Journal of Research on the Lepidoptera, 1991, 28, 239-257.	0.1	24
97	Phylogenetic patterns in larval host plant and ant association of Indo-Australian Arhopalini butterflies (Lycaenidae: Theclinae). Biological Journal of the Linnean Society, 2005, 84, 225-241.	0.7	22
98	Temporal patterns of diversification in Andean Eois, a species-rich clade of moths (Lepidoptera,) Tj ETQq0 0 0 rgl	3T /Oyerlo [,] 0.8	ck 10 Tf 50 4
99	Down in the flood? How moth communities are shaped in temperate floodplain forests. Insect Conservation and Diversity, 2012, 5, 389-397.	1.4	22
100	Uptake of flavonoids from Vicia villosa (Fabaceae) by the lycaenid butterfly, Polyommatus icarus (Lepidoptera: Lycaenidae). Biochemical Systematics and Ecology, 1997, 25, 527-536.	0.6	21
101	Temperature-mediated plasticity in egg and body size in egg size-selected lines of a butterfly. Journal of Thermal Biology, 2006, 31, 347-354.	1.1	21
102	Neotropical <i>Eois</i> (Lepidoptera: Geometridae): Checklist, Biogeography, Diversity, and Description Patterns. Annals of the Entomological Society of America, 2011, 104, 1091-1107.	1.3	21
103	Habitat and host plant use of the Large Copper Butterfly Lycaena dispar in an urban environment. Journal of Insect Conservation, 2012, 16, 709-721.	0.8	21
104	Loss of interactions with ants under cold climate in a regional myrmecophilous butterfly fauna. Journal of Biogeography, 2012, 39, 1782-1790.	1.4	21
105	Climate and hostâ€plant associations shaped the evolution of ceutorhynch weevils throughout the Cenozoic. Evolution; International Journal of Organic Evolution, 2018, 72, 1815-1828.	1.1	21
106	Patterns or mechanisms? Bergmann's and Rapoport's rule in moths along an elevational gradient. Community Ecology, 2016, 17, 137-148.	0.5	20
107	Species richness measures fail in resolving diversity patterns of speciose forest moth assemblages. Biodiversity and Conservation, 2012, 21, 2499-2508.	1.2	19
108	Natural Forest Management in Neotropical Mountain Rain Forests — An Ecological Experiment. Ecological Studies, 2008, , 347-359.	0.4	18

#	Article	IF	CITATIONS
109	Scientific abstracts from the 6th International Barcode of Life Conference / Résumés scientifiques du 6 ^e congrès international « Barcode of Life ». Genome, 2015, 58, 163-303.	0.9	18
110	Large geographic distance versus small DNA barcode divergence: Insights from a comparison of European to South Siberian Lepidoptera. PLoS ONE, 2018, 13, e0206668.	1.1	18
111	What Prolongs a Butterfly's Life?: Trade-Offs between Dormancy, Fecundity and Body Size. PLoS ONE, 2014, 9, e111955.	1.1	17
112	Complete elimination of hostplant quinolizidine alkaloids by larvae of a polyphagous lycaenid butterfly, Callophrys rubi. Oecologia, 1993, 94, 441-445.	0.9	16
113	Species Richness and Host Specificity among Caterpillar Ensembles on Shrubs in the Andes of Southern Ecuador. Neotropical Entomology, 2012, 41, 375-385.	0.5	16
114	Carabid beetle condition, reproduction and density in winter oilseed rape affected by field and landscape parameters. Journal of Applied Entomology, 2012, 136, 665-674.	0.8	16
115	Community Structure of Skipper Butterflies (Lepidoptera, Hesperiidae) along Elevational Gradients in Brazilian Atlantic Forest Reflects Vegetation Type Rather than Altitude. PLoS ONE, 2014, 9, e108207.	1.1	16
116	Neotropical moth assemblages degrade due to oil palm expansion. Biodiversity and Conservation, 2017, 26, 2295-2326.	1.2	16
117	Diversification rates, host plant shifts and an updated molecular phylogeny of Andean Eois moths (Lepidoptera: Geometridae). PLoS ONE, 2017, 12, e0188430.	1.1	16
118	Larval Sociality in Three Species of Central-place Foraging Lappet Moths (Lepidoptera: Lasiocampidae): A Comparative Survey. Zoologischer Anzeiger, 2003, 242, 209-222.	0.4	15
119	Many caterpillars in a montane rain forest in Ecuador are not classical herbivores. Journal of Tropical Ecology, 2015, 31, 473-476.	0.5	15
120	Exploitation of lycaenid-ant mutualisms by braconid parasitoids. The Journal of Research on the Lepidoptera, 1995, 31, 153-168.	0.1	15
121	The Host Genera of Ant-Parasitic Lycaenidae Butterflies: A Review. Psyche: Journal of Entomology, 2012, 2012, 1-10.	0.4	14
122	Ant predation on herbivores through a multitrophic lens: how effects of ants on plant herbivore defense and natural enemies vary along temperature gradients. Current Opinion in Insect Science, 2016, 14, 73-80.	2.2	14
123	A critical study of linear arrays with equal side lobes. , 0, , .		13
124	Understorey versus canopy: patterns of vertical stratification and diversity among Lepidoptera in a Bornean rain forest. Forestry Sciences, 2001, , 133-152.	0.4	13
125	High hostâ€plant nitrogen content: a prerequisite for the evolution of ant–caterpillar mutualism?. Journal of Evolutionary Biology, 2012, 25, 1658-1666.	0.8	13
126	Pluralism in grassland management promotes butterfly diversity in a large Central European conservation area. Journal of Insect Conservation, 2017, 21, 277-285.	0.8	13

#	Article	IF	CITATIONS
127	Moth assemblages in Costa Rica rain forest mirror smallâ€scale topographic heterogeneity. Biotropica, 2020, 52, 288-301.	0.8	13
128	Multi-decadal surveys in a Mediterranean forest reserve – do succession and isolation drive moth species richness?. Nature Conservation, 0, 35, 25-40.	0.0	13
129	Tracing the radiation of Maniola (Nymphalidae) butterflies: new insights from phylogeography hint at one single incompletely differentiated species complex. Ecology and Evolution, 2015, 5, 46-58.	0.8	12
130	Host Plant Associations and Parasitism of South Ecuadorian <i>Eois</i> Species (Lepidoptera:) Tj ETQq0 0 0 rgBT	/Overlock 0.6	10 Tf 50 62: 12
131	Life-history plasticity in the butterfly Lycaena hippothoe: local adaptations and trade-offs. Biological Journal of the Linnean Society, 2002, 75, 173-185.	0.7	12
132	Hot summers, long life: egg laying strategies of Maniola butterflies are affected by geographic provenance rather than adult diet. Contributions To Zoology, 2013, 82, 27-36.	0.2	11
133	Transgressing Wallace's Line brings hyperdiverse weevils down to earth. Ecography, 2020, 43, 1329-1340.	2.1	11
134	Understanding small-scale insect diversity patterns inside two nature reserves: the role of local and landscape factors. Biodiversity and Conservation, 2020, 29, 2399-2418.	1.2	11
135	Plasticity in foraging patterns of larval colonies of the small Eggar moth, Eriogaster lanestris (Lepidoptera: Lasiocampidae). Oecologia, 2002, 131, 626-634.	0.9	10
136	Massive structural redundancies in species composition patterns of floodplain forest moths. Ecography, 2016, 39, 253-260.	2.1	10
137	Micro-moth communities mirror environmental stress gradients within a Mediterranean nature reserve. Basic and Applied Ecology, 2016, 17, 273-281.	1.2	10
138	Mechanoreceptive properties of caterpillar hairs involved in mediation of butterfly-ant symbioses. Die Naturwissenschaften, 1992, 79, 561-563.	0.6	9
139	Stable isotope signatures reflect dietary diversity in European forest moths. Frontiers in Zoology, 2016, 13, 37.	0.9	9
140	Summer floods shape meadow butterfly communities in a floodplain nature reserve in Central Europe. Journal of Insect Conservation, 2016, 20, 433-445.	0.8	9

141	Molecular phylogeny of the Palaearctic butterfly genus Pseudophilotes (Lepidoptera: Lycaenidae) with focus on the Sardinian endemic P. barbagiae. BMC Zoology, 2018, 3, .	0.3	9
142	Drastic loss of insects (Lepidoptera: Geometridae) in urban landscapes in a tropical biodiversity hotspot. Journal of Insect Conservation, 2021, 25, 395-405.	0.8	9
143	How differences in the settling behaviour of moths (Lepidoptera) may contribute to sampling bias when using automated light traps. European Journal of Entomology, 0, 113, 502-506.	1.2	9
144	Feasibility of a combined sampling approach for studying caterpillar assemblages - a case study from shrubs in the Andean montane forest zone. The Journal of Research on the Lepidoptera, 2010, 43, 27-35.	0.1	8

9

#	Article	IF	CITATIONS
145	Methodological Challenges of a Megadiverse Ecosystem. Ecological Studies, 2008, , 41-47.	0.4	7
146	Fineâ€ŧuning of a mowing regime, a method for the management of the invasive plant, <i><scp>A</scp>mbrosia artemisiifolia</i> , at different population densities. Weed Biology and Management, 2014, 14, 232-241.	0.6	7
147	Insect herbivory in alpine grasslands is constrained by community and host traits. Journal of Vegetation Science, 2015, 26, 663-673.	1.1	7
148	The trinity of ecological contrasts: a case study on rich insect assemblages by means of species, functional and phylogenetic diversity measures. BMC Ecology, 2020, 20, 29.	3.0	7
149	Qualitative and Quantitative Loss of Habitat at Different Spatial Scales Affects Functional Moth Diversity. Frontiers in Ecology and Evolution, 2021, 9, .	1.1	7
150	The ant associates of Lycaenidae butterfly caterpillars – revisited. Nota Lepidopterologica, 0, 44, 159-174.	0.6	7
151	10.1023/A:1019297222922.,2011,,.		7
152	Colony survivorship of social caterpillars in the field: a case study of the small eggar moth (Lepidoptera: Lasiocampidae). The Journal of Research on the Lepidoptera, 2005, 38, 15-25.	0.1	7
153	Local, forest stand and landscape-scale correlates of plant communities in isolated coastal forest reserves. Plant Biosystems, 2021, 155, 457-469.	0.8	6
154	Ant Diversity and Community Composition in Alpine Tree Line Ecotones. Insects, 2021, 12, 219.	1.0	6
155	Moths at tropical forest margins $\hat{a} \in$ " how mega-diverse insect assemblages respond to forest disturbance and recovery. , 2007, , 37-58.		6
156	The influence of larval age and ant number on myrmecophilous interactions of the African grass blue butterfly, Zizeeria knysna (Lepidoptera: Lycaenidae). The Journal of Research on the Lepidoptera, 1995, 31, 213-232.	0.1	6
157	Ecological specialisation and range size determine intraspecific body size variation in a speciose clade of insect herbivores. Oikos, 2022, 2022, .	1.2	6
158	Ant community composition and functional traits in new grassland strips within agricultural landscapes. Ecology and Evolution, 2021, 11, 8319-8331.	0.8	5
159	Permeability of habitat edges for Ringlet butterflies (Lepidoptera, Nymphalidae, Erebia Dalman 1816) in an alpine landscape. Nota Lepidopterologica, 0, 43, 29-41.	0.6	5
160	Differences in the behaviour of ants towards two larval instars of Lycaena tityrus (Lep., Lycaenidae). Mitteilungen Aus Dem Museum Fur Naturkunde in Berlin - Deutsche Entomologische Zeitschrift, 2008, 36, 267-271.	0.3	4
161	Caterpillar assemblages on <i><scp>C</scp>husquea</i> bamboos in southern <scp>E</scp> cuador: abundance, guild structure, and the influence of host plant quality. Ecological Entomology, 2016, 41, 698-706.	1.1	4
162	Consistent shift in nutritional ecology of ants reveals trophic flexibility across alpine treeâ€line ecotones. Ecological Entomology, 2021, 46, 1082-1092.	1.1	4

#	Article	IF	CITATIONS
163	The potential of land-use systems for maintaining tropical forest butterfly diversity. Environmental Science and Engineering, 2010, , 73-96.	0.1	4
164	Bait visitation by Formica lemani (Hymenoptera: Fomicidae) indicates shortage of carbohydrates in alpine grasslands. European Journal of Entomology, 0, 115, 217-222.	1.2	4
165	Exploring the power of moth samples to reveal community patterns along shallow ecological gradients. Ecological Entomology, 0, , .	1.1	4
166	The coming and going of Batesian mimicry in a Holarctic butterfly clade. BMC Biology, 2010, 8, 122.	1.7	3
167	Past Dynamics of Speciation in Andean Mountain Rainforests. Ecological Studies, 2013, , 67-79.	0.4	3
168	Trait Variation in Moths Mirrors Small-Scaled Ecological Gradients in A Tropical Forest Landscape. Insects, 2020, 11, 612.	1.0	3
169	Dietary specialization mirrors Rapoport's rule in European geometrid moths. Global Ecology and Biogeography, 2022, 31, 1161-1171.	2.7	3
170	The value of targeted reforestations for local insect diversity: a case study from the Ecuadorian Andes. Biodiversity and Conservation, 2015, 24, 2709-2734.	1.2	2
171	Impact of inundation regime on wild bee assemblages and associated bee–flower networks. Apidologie, 2018, 49, 817-826.	0.9	2
172	From forest to fragment: compositional differences inside coastal forest moth assemblages and their environmental correlates. Oecologia, 2021, 195, 453-467.	0.9	2
173	Aposematic Coloration of Moths Decreases Strongly along an Elevational Gradient in the Andes. Insects, 2021, 12, 903.	1.0	2
174	Interactions between lycaenid butterflies and ants in Peninsular Malaysia. Monographiae Biologicae, 1996, , 291-296.	0.1	2
175	On the functional foreleg tarsus in Caerulea males (Lepidoptera: Lycaenidae: Polyommatini). The Journal of Research on the Lepidoptera, 1993, 30, 289-296.	0.1	2
176	Ecological Drift and Directional Community Change in an Isolated Mediterranean Forest Reserve—Larger Moth Species Under Higher Threat. Journal of Insect Science, 2020, 20, .	0.6	1
177	Trail Following as a Rare Phenomenon among Non-social Lappet moth Larvae (Lepidoptera:) Tj ETQq1 1 0.78431	4 rgBT /O	verlock 10 Tfl
178	Low Herbivory among Targeted Reforestation Sites in the Andean Highlands of Southern Ecuador. PLoS ONE, 2016, 11, e0151277.	1.1	1
179	Forest Modification Affects Diversity (But Not Dynamics) of Speciose Tropical Pyraloid Moth Communities1. Biotropica, 2004, 36, 615.	0.8	0
180	Central and Northern European caterpillar assemblages show strong phylogenetic structure. Functional Ecology, 0, , .	1.7	0

#	Article	IF	CITATIONS
181	Effects of Fire on the Diversity of Geometrid Moths on Mt. Kilimanjaro. , 2006, , 69-75.		Ο
182	Host-plant relationships of lycaenid butterflies: large-scale patterns, interactions with plant chemistry, and mutualism with ants. , 1996, , 259-267.		0
183	Elachistine moths of Australia (Lepidoptera: Gelechioidea: Elachistidae) by Lauri Kaila, 2011. The Journal of Research on the Lepidoptera, 2011, 44, 49-50.	0.1	Ο
184	Guia dos Sphingidae da Serra dos Órgãos, sudeste do Brasil. A guide to the hawkmoths of the Serra dos Orgaos, south-eastern Brazil by Alan Martin, Alexandre Soares and Jorge Bizarro, 2011. The Journal of Research on the Lepidoptera, 2011, 44, 107-108.	0.1	0
185	Distribution atlas of butterflies in Europe by O. Kudrna, A. Harpke, K. Lux, J. Pennerstorfer, O. Schweiger, J. Settele and M. Wiemers, 2011. The Journal of Research on the Lepidoptera, 2011, 44, 109-110.	0.1	0
186	Owlet caterpillars of Eastern North America by D. L. Wagner, D. F. Schweitzer, J. B. Sullivan & R. C. Reardon, 2011. The Journal of Research on the Lepidoptera, 2012, 45, 25-26.	0.1	0
187	Lepidoptera Argentina, Parte I: Castniidae by F. C. Penco, 2011. The Journal of Research on the Lepidoptera, 2012, 45, 91-92.	0.1	0