Abdul Rehman

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4688543/publications.pdf

Version: 2024-02-01

74 papers 3,736 citations

28 h-index 57 g-index

78 all docs 78 docs citations

78 times ranked 3554 citing authors

#	Article	IF	CITATIONS
1	Response of Phenylpropanoid Pathway and the Role of Polyphenols in Plants under Abiotic Stress. Molecules, 2019, 24, 2452.	1.7	999
2	Photosynthetic Response of Plants Under Different Abiotic Stresses: A Review. Journal of Plant Growth Regulation, 2020, 39, 509-531.	2.8	406
3	Role of 24-epibrassinolide (EBL) in mediating heavy metal and pesticide induced oxidative stress in plants: A review. Ecotoxicology and Environmental Safety, 2018, 147, 935-944.	2.9	235
4	Nickel; whether toxic or essential for plants and environment - A review. Plant Physiology and Biochemistry, 2018, 132, 641-651.	2.8	202
5	Zinc nutrition in wheat-based cropping systems. Plant and Soil, 2018, 422, 283-315.	1.8	152
6	Seed priming of Zn with endophytic bacteria improves the productivity and grain biofortification of bread wheat. European Journal of Agronomy, 2018, 94, 98-107.	1.9	136
7	Application of zinc improves the productivity and biofortification of fine grain aromatic rice grown in dry seeded and puddled transplanted production systems. Field Crops Research, 2018, 216, 53-62.	2.3	93
8	Pseudomonas-aided zinc application improves the productivity and biofortification of bread wheat. Crop and Pasture Science, 2018, 69, 659.	0.7	76
9	Regulation of photosynthesis under salt stress and associated tolerance mechanisms. Plant Physiology and Biochemistry, 2022, 178, 55-69.	2.8	76
10	Influence of Sesbania Brown Manuring and Rice Residue Mulch on Soil Health, Weeds and System Productivity of Conservation Rice–Wheat Systems. Land Degradation and Development, 2017, 28, 1078-1090.	1.8	66
11	Phytohormones as Growth Regulators During Abiotic Stress Tolerance in Plants. Frontiers in Agronomy, 2022, 4, .	1.5	63
12	Rice Responses and Tolerance to Metal/Metalloid Toxicity., 2019,, 299-312.		61
13	Seed priming with zinc improves the germination and early seedling growth of wheat. Seed Science and Technology, 2015, 43, 262-268.	0.6	57
14	Improving resistance against terminal drought in bread wheat by exogenous application of proline and gammaâ€aminobutyric acid. Journal of Agronomy and Crop Science, 2017, 203, 464-472.	1.7	55
15	Evaluation of Fourteen Bread Wheat (Triticum aestivum L.) Genotypes by Observing Gas Exchange Parameters, Relative Water and Chlorophyll Content, and Yield Attributes under Drought Stress. Sustainability, 2021, 13, 4799.	1.6	53
16	Zinc seed coating improves the growth, grain yield and grain biofortification of bread wheat. Acta Physiologiae Plantarum, 2016, 38, 1.	1.0	50
17	Crop diversification and saline water irrigation as potential strategies to save freshwater resources and reclamation of marginal soils—a review. Environmental Science and Pollution Research, 2020, 27, 28695-28729.	2.7	50
18	Comparison of conventional and conservation rice-wheat systems in Punjab, Pakistan. Soil and Tillage Research, 2017, 169, 35-43.	2.6	45

#	Article	IF	Citations
19	Utilizing the Allelopathic Potential of Brassica Species for Sustainable Crop Production: A Review. Journal of Plant Growth Regulation, 2019, 38, 343-356.	2.8	44
20	Adequate zinc nutrition improves the tolerance against drought and heat stresses in chickpea. Plant Physiology and Biochemistry, 2019, 143, 11-18.	2.8	43
21	High intrinsic seed Zn concentration improves abiotic stress tolerance in wheat. Plant and Soil, 2019, 437, 195-213.	1.8	43
22	Agronomic Biofortification of Zinc in Pakistan: Status, Benefits, and Constraints. Frontiers in Sustainable Food Systems, 2020, 4, .	1.8	42
23	Zinc nutrition in chickpea (Cicer arietinum): a review. Crop and Pasture Science, 2020, 71, 199.	0.7	41
24	Salt Stress in Brassica: Effects, Tolerance Mechanisms, and Management. Journal of Plant Growth Regulation, 2022, 41, 781-795.	2.8	40
25	Characterizing bread wheat genotypes of Pakistani origin for grain zinc biofortification potential. Journal of the Science of Food and Agriculture, 2018, 98, 4824-4836.	1.7	38
26	Foliageâ€applied sodium nitroprusside and hydrogen peroxide improves resistance against terminal drought in bread wheat. Journal of Agronomy and Crop Science, 2017, 203, 473-482.	1.7	36
27	Zinc Application in Combination with Zinc Solubilizing Enterobacter sp. MN17 Improved Productivity, Profitability, Zinc Efficiency, and Quality of Desi Chickpea. Journal of Soil Science and Plant Nutrition, 2020, 20, 2133-2144.	1.7	36
28	Integrated use of seed priming and biochar improves salt tolerance in cowpea. Scientia Horticulturae, 2020, 272, 109507.	1.7	34
29	Morphological, physiological and biochemical aspects of osmoprimingâ€induced drought tolerance in lentil. Journal of Agronomy and Crop Science, 2020, 206, 176-186.	1.7	32
30	Application of natural plant extracts improves the tolerance against combined terminal heat and drought stresses in bread wheat. Journal of Agronomy and Crop Science, 2017, 203, 528-538.	1.7	30
31	MANGANESE NUTRITION IMPROVES THE PRODUCTIVITY AND GRAIN BIOFORTIFICATION OF BREAD WHEAT IN ALKALINE CALCAREOUS SOIL. Experimental Agriculture, 2018, 54, 744-754.	0.4	30
32	Supraâ€optimal growth temperature exacerbates adverse effects of low Zn supply in wheat. Journal of Plant Nutrition and Soil Science, 2019, 182, 656-666.	1.1	28
33	Fiber yield and quality in cotton under drought: Effects and management. Agricultural Water Management, 2021, 255, 106994.	2.4	28
34	Effect of predicted climate change on growth and yield performance of wheat under varied nitrogen and zinc supply. Plant and Soil, 2019, 434, 231-244.	1.8	24
35	Soil Amendment with Arbuscular Mycorrhizal Fungi and Biochar Improves Salinity Tolerance, Growth, and Lipid Metabolism of Common Wheat (Triticum aestivum L.). Sustainability, 2022, 14, 3210.	1.6	20
36	Sugarcane Distillery Spent Wash (DSW) as a Bio-Nutrient Supplement: A Win-Win Option for Sustainable Crop Production. Agronomy, 2021, 11, 183.	1.3	19

#	Article	IF	Citations
37	Morphological, physiological and biochemical aspects of zinc seed priming-induced drought tolerance in faba bean. Scientia Horticulturae, 2021, 281, 109894.	1.7	19
38	Increasing sustainability for rice production systems. Journal of Cereal Science, 2022, 103, 103400.	1.8	19
39	Influence of Zn nutrition on the productivity, grain quality and grain biofortification of wheat under conventional and conservation rice–wheat cropping systems. Archives of Agronomy and Soil Science, 2020, 66, 1042-1057.	1.3	17
40	Zinc seed treatments improve productivity, quality and grain biofortification of desi and kabuli chickpea (Cicer arietinum). Crop and Pasture Science, 2020, 71, 668.	0.7	16
41	Integration of Seed Priming and Biochar Application Improves Drought Tolerance in Cowpea. Journal of Plant Growth Regulation, 2021, 40, 1972-1980.	2.8	16
42	Manganese nutrition improves the productivity and grain biofortification of fine grain aromatic rice in conventional and conservation production systems. Paddy and Water Environment, 2017, 15, 563-572.	1.0	13
43	Growth Stimulating Influence of Foliage Applied Brassica Water Extracts on Morphological and Yield Attributes of Bread Wheat under Different Fertilizer Regimes. Planta Daninha, 2018, 36, .	0.5	12
44	First report of Nigrospora sphaerica causing leaf spot of date palm in Pakistan. Journal of Plant Pathology, 2020, 102, 223-223.	0.6	11
45	Characterization and quantification of \hat{I}^3 -oryzanol in Korean rice landraces. Journal of Cereal Science, 2019, 88, 150-156.	1.8	10
46	Lentil. , 2021, , 408-428.		10
47	Sustainable Agriculture and Food Security. , 2019, , 3-24.		8
48	The residual impact of straw mulch and biochar amendments on grain quality and amino acid contents of rainfed maize crop. Journal of Plant Nutrition, 2023, 46, 1283-1295.	0.9	8
49	Abiotic Stress Tolerance in Plants Through Pre-sowing Seed Treatments with Mineral Elements and Growth Regulators. , 2019, , 427-445.		7
50	Soil Application of Boron Improves the Tillering, Leaf Elongation, Panicle Fertility, Yield and its Grain Enrichment in Fine-Grain Aromatic Rice. Journal of Plant Nutrition, 2015, 38, 338-354.	0.9	6
51	First report of Alternaria alternata causing postharvest fruit rot of peach in Pakistan. Journal of Plant Pathology, 2019, 101, 209-209.	0.6	6
52	Residual zinc improves soil health, productivity and grain quality of rice in conventional and conservation tillage wheat-based systems. Crop and Pasture Science, 2020, 71, 322.	0.7	6
53	First Record of <i>Colletotrichum gloeosporioides</i> Causing Anthracnose of Banana in Pakistan. Plant Disease, 2021, 105, 2013.	0.7	6
54	Predicting the impact of environmental factors on citrus canker through multiple regression. PLoS ONE, 2022, 17, e0260746.	1.1	6

#	Article	IF	CITATIONS
55	Sustainable Nutrient Management. , 2019, , 167-211.		5
56	Seed priming with zinc sulfate and zinc chloride affects physio-biochemical traits, grain yield and		

ABDUL REHMAN

#	Article	IF	CITATIONS
73	Effects of ethanol on health and performance of poultry. World's Poultry Science Journal, 2021, 77, 91-104.	1.4	О
74	Brassinosteroids and cold stress tolerance in plants. , 2022, , 189-199.		0