
Shaofeng Jia

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4688489/publications.pdf Version: 2024-02-01

SHAOFENC LIA

#	Article	IF	CITATIONS
1	Principles of Stator DC Winding Excited Vernier Reluctance Machines. IEEE Transactions on Energy Conversion, 2016, 31, 935-946.	3.7	79
2	A Stator-PM Consequent-Pole Vernier Machine With Hybrid Excitation and DC-Biased Sinusoidal Current. IEEE Transactions on Magnetics, 2017, 53, 1-4.	1.2	44
3	Flux Modulation Principles of DC-Biased Sinusoidal Current Vernier Reluctance Machines. IEEE Transactions on Industry Applications, 2018, 54, 3187-3196.	3.3	41
4	Analysis of the Power Factor of Stator DC-Excited Vernier Reluctance Machines. IEEE Transactions on Magnetics, 2015, 51, 1-4.	1.2	35
5	Hybrid Excitation Stator PM Vernier Machines With Novel DC-Biased Sinusoidal Armature Current. IEEE Transactions on Industry Applications, 2018, 54, 1339-1348.	3.3	33
6	Improved Torque Capacity for Flux Modulated Machines by Injecting DC Currents Into the Armature Windings. IEEE Transactions on Magnetics, 2017, 53, 1-5.	1.2	31
7	Design Considerations of Stator DC-Winding Excited Vernier Reluctance Machines Based on the Magnetic Gear Effect. IEEE Transactions on Industry Applications, 2017, 53, 1028-1037.	3.3	25
8	Fault-Tolerant Control Strategy of the Open-Winding Inverter for DC-Biased Vernier Reluctance Machines. IEEE Transactions on Power Electronics, 2019, 34, 1658-1671.	5.4	25
9	Stator/Rotor Slot and Winding Pole Pair Combinations of DC-Biased Current Vernier Reluctance Machines. IEEE Transactions on Industry Applications, 2018, 54, 5967-5977.	3.3	24
10	Postfault Control and Harmonic Current Suppression for a Symmetrical Dual Three-Phase SPMSM Drive Under Single-Phase Open-Circuit Fault. IEEE Access, 2020, 8, 67674-67686.	2.6	21
11	Analysis of Multi-Phase and Multi-Layer Factional-Slot Concentrated-Winding on PM Eddy Current Loss Considering Axial Segmentation and Load Operation. IEEE Transactions on Magnetics, 2018, 54, 1-6.	1.2	20
12	Study of Direct-Drive Permanent Magnet Synchronous Generators with Solid Rotor Back-Iron and Different Windings. IEEE Transactions on Industry Applications, 2015, , 1-1.	3.3	19
13	Three-Phase Four-Leg Drive for DC-Biased Sinusoidal Current Vernier Reluctance Machine. IEEE Transactions on Industry Applications, 2019, 55, 2758-2769.	3.3	19
14	Analysis of Winding MMF and Loss for Axial Flux PMSM With FSCW Layout and YASA Topology. IEEE Transactions on Industry Applications, 2020, 56, 2622-2635.	3.3	19
15	Hybrid excited vernier PM machines with novel DC-biased sinusoidal armature current. , 2016, , .		18
16	Flux modulation principles of DC-biased sinusoidal current vernier reluctance machines. , 2016, , .		16
17	Optimal Three-Dimensional Current Computation Flux Weakening Control Strategy for DC-Biased Vernier Reluctance Machines Considering Inductance Nonlinearity. IEEE Transactions on Power Electronics, 2019, 34, 1560-1571.	5.4	16
18	A High Torque Density Concentrated Winding Vernier Reluctance Machine With DC-Biased Current. IEEE Transactions on Magnetics, 2018, 54, 1-5.	1.2	15

SHAOFENG JIA

#	Article	IF	CITATIONS
19	A Novel Vernier Reluctance Fully Superconducting Direct Drive Synchronous Generator With Concentrated Windings for Wind Power Application. IEEE Transactions on Applied Superconductivity, 2016, 26, 1-5.	1.1	14
20	New Optimal Current Control Strategy for Six-Phase DC-Biased Vernier Reluctance Machines Considering Distorted EMF. IEEE Transactions on Power Electronics, 2018, 33, 10633-10645.	5.4	14
21	Comparison of Stator DC Current Excited Vernier Reluctance Machines With Different Field Winding Configurations. IEEE Transactions on Magnetics, 2017, 53, 1-4.	1.2	13
22	Comparative Study of Harmonic Current Suppression Control Strategies for Six-Phase DC-Biased Vernier Reluctance Machines. IEEE Transactions on Industry Applications, 2018, 54, 5843-5855.	3.3	13
23	Design of a linear vernier permanent magnet machine with high thrust force density and low thrust force ripple. , 2017, , .		12
24	Stator/rotor slot and winding pole pair combinations of DC biased sinusoidal vernier reluctance machines. , 2016, , .		11
25	Torque ripple reduction techniques for stator DC winding excited vernier reluctance machines. , 2016, , .		10
26	Design considerations and parameter optimization of stator wound field synchronous machines based on magnetic the gear effect. , 2015, , .		9
27	A Novel DC-Biased Current Dual PM Vernier Machine. IEEE Transactions on Industry Applications, 2021, 57, 4595-4605.	3.3	9
28	Quasi-Proportional-Resonant Control for the Hybrid Distribution Transformer With LCL-Type Converters. IEEE Transactions on Industry Applications, 2022, 58, 6368-6385.	3.3	9
29	A Novel DC-Biased Current Dual PM Vernier Machine. , 2019, , .		8
30	Comparison of stator DC-excited vernier reluctance machines with synchronous reluctance machines. , 2015, , .		7
31	Structural Optimization of a Permanent-Magnet Direct-Drive Generator Considering Eccentric Electromagnetic Force. IEEE Transactions on Magnetics, 2015, 51, 1-4.	1.2	6
32	A Temperature-Dependent Hysteresis Model for Soft Ferrites. IEEE Transactions on Magnetics, 2017, 53, 1-4.	1.2	6
33	Design and Comparison of Three Different Types of IE4 Efficiency Machines. , 2019, , .		6
34	A Dual Stator/Rotor PM and Winding Flux Modulated PM Machine. , 2020, , .		6
35	A High Torque Density Vernier PM Machines for Hybrid Electric Vehicle Applications. , 2016, , .		5
36	Drive for DC-biased sinusoidal current vernier reluctance motors with reduced power electronics devices. , 2017, , .		5

Shaofeng Jia

#	Article	IF	CITATIONS
37	Inductance Calculation for the Symmetrical Non-Salient Dual Three-Phase PMSM Based on Winding Function Approach. , 2018, , .		5
38	Research on the Reactive Power Regulation Capability of Stator DC Current Excited Vernier Reluctance Machine. , 2019, , .		5
39	A Full-Speed Range Hybrid PWM Strategy for High-Speed Permanent Magnet Synchronous Machine Considering Mitigation of Current Harmonics. , 2019, , .		5
40	Harmonic current suppression control strategy for hybrid excited vernier PM machines. , 2017, , .		4
41	Loss Analysis and Experiment of Fractional-Slot Concentrated-Winding Axial Flux PMSM for EV Applications. , 2018, , .		4
42	Design of IE4 Level Synchronous Reluctance Machines with Different Number of Poles. , 2019, , .		4
43	A Novel High-Speed Permanent Magnet Machine with Dual Semi-Cage Winding. , 2020, , .		4
44	Analysis of Operation Modes and Control for a Multiple Torque Component Single Air Gap Magnetless Machine. , 2020, , .		4
45	Quasi-Proportional-Resonant Control Strategy for the Hybrid Distribution Transformer with LCL-Type Converters. , 2020, , .		4
46	Digital Current Controller Design for SPMSM With Low Switching-to-Fundamental Frequency Ratios. IEEE Transactions on Industry Applications, 2022, 58, 4685-4697.	3.3	4
47	Study of direct-drive permanent magnet synchronous generators with solid rotor back-iron and different windings. , 2014, , .		3
48	Drive for DC-biased sinusoidal current vernier reluctance motors with asymmetrical power electronics devices. , 2017, , .		3
49	A Combined Control Method for High Speed Switched Reluctance Motor. , 2019, , .		3
50	Two-Phase DC-Biased Vernier Reluctance Machines. IEEE Transactions on Magnetics, 2021, 57, 1-5.	1.2	3
51	Current Control System of Hybrid Converter for Suppressing Current Harmonics. , 2021, , .		3
52	A Novel DC-Biased Phase Current-Independent Drive High-Speed Vernier Reluctance Machine. IEEE Transactions on Magnetics, 2021, 57, 1-5.	1.2	3
53	Analysis of DC-Biased Vernier Reluctance Machines Having Distributed Windings. IEEE Transactions on Magnetics, 2021, 57, 1-5.	1.2	3
54	Loss minimization control of vernier reluctance machines with DC field windings in stator. , 2015, , .		2

Shaofeng Jia

#	Article	IF	CITATIONS
55	Comparison of IPM Machines with Fractional-Slot Concentrated Windings and Coil-Pitch of Two Slot-Pitches Windings for EV Application. , 2018, , .		2
56	Simulation of Field Orientation Control for A Dual Stator/Rotor PM and Winding Flux Modulated PM Machine. , 2021, , .		2
57	Robust DC-Link Voltage Control and Discrete-Time Sensorless Control for High-Speed Flywheel Energy Storage System. , 2020, , .		2
58	Discrete Current Regulator Design with Sensorless Drive for High-Speed Permanent Magnet Synchronous Machine. , 2020, , .		2
59	Enhanced Flux Modulation of FSCW Consequent Pole PM Machine Employing Stator Slot Halbach PM. , 2020, , .		2
60	Power Converter Topology and Control Strategy for Novel Two-Phase DC-Biased Vernier Reluctance Machine. , 2020, , .		2
61	Low rotor eddy current losses SPM servo motors with fractional slot concentrated windings and novel retaining cage. , 2016, , .		1
62	Optimization of a Consequent-Pole PMSM with a Sobol Sequence Based Multi-Objective Hybrid Optimization Algorithm. , 2021, , .		1
63	Dual Stator Rotor Armature Winding Magnetless Machine with Multi-torque Components. , 2021, , .		1
64	Comparison of stator DC current excited vernier reluctance machines with different field winding configurations. , 2016, , .		0
65	Improved torque and flux weakening capability for flux modulated machines by injecting DC currents into the armature windings. , 2016, , .		Ο
66	A Novel MTPA Control Strategy for Multiple Torque Component Single Air Gap Magnetless Machines. , 2021, , .		0