
Anthony T Maurelli

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4688207/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Wastewater surveillance for SARS-CoV-2 in a small coastal community: Effects of tourism on viral presence and variant identification among low prevalence populations. Environmental Research, 2022, 208, 112496.	7.5	16
2	What Is Motion? Recent Advances in the Study of Molecular Movement Patterns of the Peptidoglycan Synthesis Machines. Journal of Bacteriology, 2022, 204, JB0059821.	2.2	3
3	Psychosocial health of school-aged children during the initial COVID-19 safer-at-home school mandates in Florida: a cross-sectional study. BMC Public Health, 2021, 21, 603.	2.9	44
4	Detection of SARS-CoV-2 in the gastrointestinal tract among patients with negative nasopharyngeal COVID-19 testing prior to endoscopy. Endoscopy International Open, 2021, 09, E1276-E1282.	1.8	2
5	Psychosocial Health of K-12 Students Engaged in Emergency Remote Education and In-Person Schooling: A Cross-Sectional Study. International Journal of Environmental Research and Public Health, 2021, 18, 8564.	2.6	9
6	Chlamydial MreB Directs Cell Division and Peptidoglycan Synthesis in Escherichia coli in the Absence of FtsZ Activity. MBio, 2020, 11, .	4.1	15
7	Chlamydia trachomatis Oligopeptide Transporter Performs Dual Functions of Oligopeptide Transport and Peptidoglycan Recycling. Infection and Immunity, 2020, 88, .	2.2	13
8	Competing Substrates for the Bifunctional Diaminopimelic Acid Epimerase/Glutamate Racemase Modulate Peptidoglycan Synthesis in Chlamydia trachomatis. Infection and Immunity, 2020, 89, .	2.2	0
9	Fosmidomycin, an inhibitor of isoprenoid synthesis, induces persistence in Chlamydia by inhibiting peptidoglycan assembly. PLoS Pathogens, 2019, 15, e1008078.	4.7	22
10	<i>Chlamydia trachomatis dapF</i> Encodes a Bifunctional Enzyme Capable of Both <scp>d</scp> -Glutamate Racemase and Diaminopimelate Epimerase Activities. MBio, 2018, 9, .	4.1	18
11	Distribution and characterization of Shiga toxin converting temperate phages carried by Shigella flexneri in Hispaniola. Infection, Genetics and Evolution, 2018, 65, 321-328.	2.3	13
12	Evolution of Bacterial Pathogens Within the Human Host. Microbiology Spectrum, 2016, 4, .	3.0	35
13	Investigating the Relatedness of Enteroinvasive Escherichia coli to Other E. coli and Shigella Isolates by Using Comparative Genomics. Infection and Immunity, 2016, 84, 2362-2371.	2.2	39
14	Pathogenic Chlamydia Lack a Classical Sacculus but Synthesize a Narrow, Mid-cell Peptidoglycan Ring, Regulated by MreB, for Cell Division. PLoS Pathogens, 2016, 12, e1005590.	4.7	86
15	Stx-Producing Shigella Species From Patients in Haiti: An Emerging Pathogen With the Potential for Global Spread. Open Forum Infectious Diseases, 2015, 2, ofv134.	0.9	11
16	Chlamydial Variants Differ in Ability To Ascend the Genital Tract in the Guinea Pig Model of Chlamydial Genital Infection. Infection and Immunity, 2015, 83, 3176-3183.	2.2	2
17	Structural characterization of muropeptides from <i>Chlamydia trachomatis</i> peptidoglycan by mass spectrometry resolves "chlamydial anomaly― Proceedings of the National Academy of Sciences of the United States of America, 2015, 112, 11660-11665.	7.1	55
18	Phosphoproteomic analysis of the Chlamydia caviae elementary body and reticulate body forms. Microbiology (United Kingdom), 2015, 161, 1648-1658.	1.8	10

ANTHONY T MAURELLI

#	Article	IF	CITATIONS
19	Clinical Isolates of Shiga Toxin 1a–Producing <i>Shigella flexneri</i> with an Epidemiological Link to Recent Travel to HispaA±iola. Emerging Infectious Diseases, 2014, 20, 1669-1677.	4.3	56
20	Promiscuous and Adaptable Enzymes Fill "Holes―in the Tetrahydrofolate Pathway in <i>Chlamydia</i> Species. MBio, 2014, 5, e01378-14.	4.1	47
21	Early MicroRNA Expression Profile as a Prognostic Biomarker for the Development of Pelvic Inflammatory Disease in a Mouse Model of Chlamydial Genital Infection. MBio, 2014, 5, e01241-14.	4.1	40
22	Chlamydia trachomatis Transports NAD via the Npt1 ATP/ADP Translocase. Journal of Bacteriology, 2014, 196, 2323-2323.	2.2	0
23	Potential novel antibiotics from HTS targeting the virulence-regulating transcription factor, VirF, from Shigella flexneri. Journal of Antibiotics, 2014, 67, 379-386.	2.0	20
24	Erratum for Yeruva et al., Early MicroRNA Expression Profile as a Prognostic Biomarker for the Development of Pelvic Inflammatory Disease in a Mouse Model of Chlamydial Genital Infection. MBio, 2014, 5, .	4.1	0
25	Antivirulence Genes: Insights into Pathogen Evolution through Gene Loss. Infection and Immunity, 2012, 80, 4061-4070.	2.2	112
26	nadA and nadB of Shigella flexneri 5a are antivirulence loci responsible for the synthesis of quinolinate, a small molecule inhibitor of Shigella pathogenicity. Microbiology (United Kingdom), 2007, 153, 2363-2372.	1.8	71
27	Black holes, antivirulence genes, and gene inactivation in the evolution of bacterial pathogens. FEMS Microbiology Letters, 2007, 267, 1-8.	1.8	124
28	Building the invisible wall: updating the chlamydial peptidoglycan anomaly. Trends in Microbiology, 2006, 14, 70-77.	7.7	84
29	Evolution of bacterial pathogens. , 2006, , 30-56.		0
30	L,L-diaminopimelate aminotransferase, a trans-kingdom enzyme shared by Chlamydia and plants for synthesis of diaminopimelate/lysine. Proceedings of the National Academy of Sciences of the United States of America, 2006, 103, 17909-17914.	7.1	121
31	Characterization of Chlamydia MurC-Ddl, a fusion protein exhibiting D-alanyl-D-alanine ligase activity involved in peptidoglycan synthesis and D-cycloserine sensitivity. Molecular Microbiology, 2005, 57, 41-52.	2.5	48
32	A DNA adenine methylase mutant of Shigella flexneri shows no significant attenuation of virulence. Microbiology (United Kingdom), 2004, 150, 1073-1078.	1.8	14
33	Pathoadaptive Mutations That Enhance Virulence: Genetic Organization of the cadA Regions of Shigella spp. Infection and Immunity, 2001, 69, 7471-7480.	2.2	123
34	Inhibition of Shigella flexneri-induced transepithelial migration of polymorphonuclear leucocytes by cadaverine. Cellular Microbiology, 1999, 1, 143-155.	2.1	56
35	A system for identifying post-invasion functions of invasion genes: requirements for the Mxi-Spa type III secretion pathway of Shigella flexneri in intercellular dissemination. Molecular Microbiology, 1999, 34, 675-689.	2.5	94
36	Requirement of the Shigella flexneri Virulence Plasmid in the Ability To Induce Trafficking of Neutrophils across Polarized Monolayers of the Intestinal Epithelium. Infection and Immunity, 1998, 66, 4237-4243.	2.2	3

#	Article	IF	CITATIONS
37	Effect of O side-chain length and composition on the virulence of Shigella flexneri 2a. Molecular Microbiology, 1996, 22, 63-73.	2.5	82
38	Temperature regulation of Shigella virulence: identification of the repressor gene virR, an analogue of hns, and partial complementation by tyrosyl transfer RNA (tRNA1Tyr). Molecular Microbiology, 1992, 6, 2113-2124.	2.5	108
39	Evolution of Bacterial Pathogens Within the Human Host. , 0, , 1-13.		2
40	Black Holes and Antivirulence Genes: Selection for Gene Loss as Part of the Evolution of Bacterial Pathogens. , 0, , 109-122.		6
41	Chlamydial Genetics: Decades of Effort, Very Recent Successes. , 0, , 334-351.		0