Wanbin Zhang

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4688115/publications.pdf Version: 2024-02-01

WANRIN ZHANC

#	Article	IF	CITATIONS
1	Transition metal-catalyzed allylic substitution reactions with unactivated allylic substrates. Chemical Society Reviews, 2015, 44, 7929-7967.	18.7	521
2	An Ir/Zn Dual Catalysis for Enantio- and Diastereodivergent α-Allylation of α-Hydroxyketones. Journal of the American Chemical Society, 2016, 138, 11093-11096.	6.6	293
3	Asymmetric Hydrogenation of Nonaromatic Cyclic Substrates. Chemical Reviews, 2016, 116, 14769-14827.	23.0	284
4	Ir/Cu Dual Catalysis: Enantio- and Diastereodivergent Access to α,α-Disubstituted α-Amino Acids Bearing Vicinal Stereocenters. Journal of the American Chemical Society, 2018, 140, 2080-2084.	6.6	273
5	C–N Bond Cleavage of Allylic Amines via Hydrogen Bond Activation with Alcohol Solvents in Pd-Catalyzed Allylic Alkylation of Carbonyl Compounds. Journal of the American Chemical Society, 2011, 133, 19354-19357.	6.6	251
6	Asymmetric synthesis of allylic compounds <i>via</i> hydrofunctionalisation and difunctionalisation of dienes, allenes, and alkynes. Chemical Society Reviews, 2020, 49, 2060-2118.	18.7	234
7	Stereoselective and Site-Specific Allylic Alkylation of Amino Acids and Small Peptides via a Pd/Cu Dual Catalysis. Journal of the American Chemical Society, 2017, 139, 9819-9822.	6.6	207
8	Renaissance of pyridine-oxazolines as chiral ligands for asymmetric catalysis. Chemical Society Reviews, 2018, 47, 1783-1810.	18.7	185
9	Palladium atalyzed Allylic Alkylation of Simple Ketones with Allylic Alcohols and Its Mechanistic Study. Angewandte Chemie - International Edition, 2014, 53, 6776-6780.	7.2	160
10	A Palladium atalyzed Enantioselective Addition of Arylboronic Acids to Cyclic Ketimines. Angewandte Chemie - International Edition, 2013, 52, 7540-7544.	7.2	158
11	An Asymmetric Aerobic Azaâ€Wackerâ€Type Cyclization: Synthesis of Isoindolinones Bearing Tetrasubstituted Carbon Stereocenters. Angewandte Chemie - International Edition, 2012, 51, 9141-9145.	7.2	157
12	Cooperative bimetallic catalysis in asymmetric allylic substitution. Organic and Biomolecular Chemistry, 2017, 15, 9747-9759.	1.5	157
13	Stereodivergent Pd/Cu Catalysis for the Dynamic Kinetic Asymmetric Transformation of Racemic Unsymmetrical 1,3-Disubstituted Allyl Acetates. Journal of the American Chemical Society, 2020, 142, 8097-8103.	6.6	156
14	Asymmetric Transfer and Pressure Hydrogenation with Earthâ€Abundant Transition Metal Catalysts. Chinese Journal of Chemistry, 2018, 36, 443-454.	2.6	148
15	Nickelâ€Catalyzed Asymmetric Hydrogenation of <i>N</i> â€Sulfonyl Imines. Angewandte Chemie - International Edition, 2019, 58, 7329-7334.	7.2	131
16	Chiral Bicycle Imidazole Nucleophilic Catalysts: Rational Design, Facile Synthesis, and Successful Application in Asymmetric Steglich Rearrangement. Journal of the American Chemical Society, 2010, 132, 15939-15941.	6.6	122
17	Enantio- and Diastereodivergent Construction of 1,3-Nonadjacent Stereocenters Bearing Axial and Central Chirality through Synergistic Pd/Cu Catalysis. Journal of the American Chemical Society, 2021, 143, 12622-12632.	6.6	122
18	Iridium atalyzed Asymmetric Hydrogenation of αâ€Alkylidene Succinimides. Angewandte Chemie - International Edition, 2013, 52, 2203-2206.	7.2	111

#	Article	IF	CITATIONS
19	Hydrogen-Bond-Activated Palladium-Catalyzed Allylic Alkylation via Allylic Alkyl Ethers: Challenging Leaving Groups. Organic Letters, 2014, 16, 1570-1573.	2.4	111
20	Palladium atalyzed Enantioselective Decarboxylative Cycloaddition of Vinylethylene Carbonates with Isocyanates. Chemistry - A European Journal, 2015, 21, 120-124.	1.7	111
21	Interesting and effective P,N-chelation of tetrasubstituted ferrocene ligands for palladium-catalyzed asymmetric allylic substitution. Tetrahedron Letters, 1996, 37, 4545-4548.	0.7	110
22	Enantio―and Diastereodivergent Synthesis of Spirocycles through Dualâ€Metalâ€Catalyzed [3+2] Annulation of 2â€Vinyloxiranes with Nucleophilic Dipoles. Angewandte Chemie - International Edition, 2021, 60, 24941-24949.	7.2	110
23	Mechanism of the Asymmetric Hydrogenation of Exocyclic α,βâ€Unsaturated Carbonyl Compounds with an Iridium/BiphPhox Catalyst: NMR and DFT Studies. Angewandte Chemie - International Edition, 2014, 53, 1901-1905.	7.2	106
24	Synergistic Pd/Cu Catalysis in Organic Synthesis. Chemistry - A European Journal, 2020, 26, 4895-4916.	1.7	106
25	Highly diastereoselective ortho-lithiation of 1,1′-bis-(oxazolinyl)ferrocene directed to C2-symmetric chiral ligands. Tetrahedron: Asymmetry, 1996, 7, 451-460.	1.8	105
26	Iridium atalyzed Highly Enantioselective Hydrogenation of Exocyclic α,βâ€Unsaturated Carbonyl Compounds. Advanced Synthesis and Catalysis, 2010, 352, 1841-1845.	2.1	105
27	Nickel-catalyzed C–P coupling of aryl mesylates and tosylates with H(O)PR1R2. Organic and Biomolecular Chemistry, 2012, 10, 3500.	1.5	105
28	Efficient palladium-catalyzed asymmetric allylic alkylation of ketones and aldehydes. Organic and Biomolecular Chemistry, 2011, 9, 1871.	1.5	92
29	Cobalt atalyzed Asymmetric Hydrogenation of C=N Bonds Enabled by Assisted Coordination and Nonbonding Interactions. Angewandte Chemie - International Edition, 2019, 58, 15767-15771.	7.2	92
30	Diphenylphosphinooxazoline ligands with a chiral binaphthyl backbone for Pd-catalyzed allylic alkylation. Tetrahedron Letters, 1998, 39, 4343-4346.	0.7	90
31	Asymmetric Aza-Wacker-Type Cyclization of <i>N</i> -Ts Hydrazine-Tethered Tetrasubstituted Olefins: Synthesis of Pyrazolines Bearing One Quaternary or Two Vicinal Stereocenters. Journal of the American Chemical Society, 2018, 140, 7587-7597.	6.6	88
32	lr/Zn Dual Catalysis: Enantioselective and Diastereodivergent α-Allylation of Unprotected α-Hydroxy Indanones. Organic Letters, 2017, 19, 5513-5516.	2.4	86
33	ZnCl ₂ â€Promoted Asymmetric Hydrogenation of βâ€Secondaryâ€Amino Ketones Catalyzed by a Pâ€Chiral Rh–Bisphosphine Complex. Angewandte Chemie - International Edition, 2015, 54, 2260-2264.	7.2	84
34	Nickelâ€Catalyzed Asymmetric Hydrogenation of 2â€Amidoacrylates. Angewandte Chemie - International Edition, 2020, 59, 5371-5375.	7.2	83
35	Regioselective Pd-Catalyzed Aerobic Aza-Wacker Cyclization for Preparation of Isoindolinones and Isoquinolin-1(2H)-ones. Organic Letters, 2012, 14, 268-271.	2.4	81
36	C2-Symmetric Diphosphine Ligands with Only the Planar Chirality of Ferrocene for the Palladium-Catalyzed Asymmetric Allylic Alkylation. Journal of Organic Chemistry, 1999, 64, 6247-6251.	1.7	80

#	Article	IF	CITATIONS
37	Novel chiral P,N-ferrocene ligands in palladium-catalyzed asymmetric allylic alkylations. Tetrahedron: Asymmetry, 1998, 9, 3371-3380.	1.8	78
38	Ni-catalyzed asymmetric hydrogenation of N-aryl imino esters for the efficient synthesis of chiral α-aryl glycines. Nature Communications, 2020, 11, 5935.	5.8	78
39	Pd(II)-Catalyzed Asymmetric Addition of Arylboronic Acids to Isatin-Derived Ketimines. Organic Letters, 2016, 18, 288-291.	2.4	74
40	Novel Chiral Bisoxazoline Ligands with a Biphenyl Backbone:Â Preparation, Complexation, and Application in Asymmetric Catalytic Reactions. Journal of Organic Chemistry, 2000, 65, 3326-3333.	1.7	73
41	Pd(<scp>ii</scp>)-catalyzed asymmetric addition of arylboronic acids to cyclic N-sulfonyl ketimine esters and a DFT study of its mechanism. Organic Chemistry Frontiers, 2015, 2, 398-402.	2.3	73
42	Catalytic Asymmetric Synthesis of the anti OVIDâ€19 Drug Remdesivir. Angewandte Chemie - International Edition, 2020, 59, 20814-20819.	7.2	73
43	Palladiumâ€Catalyzed Asymmetric Hydrogenation of αâ€Acyloxyâ€1â€arylethanones. Angewandte Chemie - International Edition, 2013, 52, 11632-11636.	7.2	72
44	Pd-catalyzed asymmetric aza-Wacker-type cyclization reaction of olefinic tosylamides. Tetrahedron Letters, 2010, 51, 5124-5126.	0.7	71
45	Pd(OAc)2-catalyzed asymmetric hydrogenation of sterically hindered N-tosylimines. Nature Communications, 2018, 9, 5000.	5.8	70
46	Palladium-catalyzed asymmetric allylic alkylation with an enamine as the nucleophilic reagent. Tetrahedron Letters, 2007, 48, 7591-7594.	0.7	67
47	The Design and Synthesis of Planar Chiral Ligands and Their Application to Asymmetric Catalysis. Synlett, 2014, 25, 615-630.	1.0	66
48	Novel C2-symmetric diphosphine ligand with only the planar chirality of ferrocene. Tetrahedron Letters, 1996, 37, 7995-7998.	0.7	64
49	Hydrogen-Bond Directed Regioselective Pd-Catalyzed Asymmetric Allylic Alkylation: The Construction of Chiral α-Amino Acids with Vicinal Tertiary and Quaternary Stereocenters. Organic Letters, 2015, 17, 5768-5771.	2.4	64
50	Nickel-catalysed asymmetric hydrogenation of oximes. Nature Chemistry, 2022, 14, 920-927.	6.6	63
51	Ni(<scp>ii</scp>)-catalyzed asymmetric addition of arylboronic acids to cyclic imines. Chemical Communications, 2017, 53, 609-612.	2.2	60
52	Ni(II)-catalyzed asymmetric alkenylations of ketimines. Nature Communications, 2018, 9, 2258.	5.8	60
53	Novel axial chiral catalyst derived from biphenyl ligand bearing only two ortho-substituents. Tetrahedron Letters, 1997, 38, 2681-2684.	0.7	59
54	Highly enantioselective Pd(II)-catalyzed Wacker-type cyclization of 2-allylphenols by use of bisoxazoline ligands with axis-unfixed biphenyl backbone. Tetrahedron Letters, 2007, 48, 4179-4182.	0.7	59

#	Article	IF	CITATIONS
55	Enamines: efficient nucleophiles for the palladium-catalyzed asymmetric allylic alkylation. Tetrahedron, 2009, 65, 512-517.	1.0	59
56	Insertion of Arynes into Arylphosphoryl Amide Bonds: One-Step Simultaneous Construction of C–N and C–P Bonds. Organic Letters, 2013, 15, 5722-5725.	2.4	59
57	Palladium-Catalyzed Aerobic Aminooxygenation of Alkenes for Preparation of Isoindolinones. Organic Letters, 2015, 17, 5566-5569.	2.4	59
58	Asymmetric Hydrogenation of α-Substituted Acrylic Acids Catalyzed by a Ruthenocenyl Phosphino-oxazoline–Ruthenium Complex. Organic Letters, 2016, 18, 2122-2125.	2.4	59
59	Chelation-Induced Axially Chiral Palladium Complex System with Tetraoxazoline Ligands for Highly Enantioselective Wacker-Type Cyclization. Journal of Organic Chemistry, 2007, 72, 9208-9213.	1.7	58
60	Nickel-catalyzed Arbuzov reactions of aryl triflates with triethyl phosphite. Tetrahedron Letters, 2011, 52, 5032-5035.	0.7	58
61	Highly enantioselective hydrogenation of N-unprotected indoles using (S)-C10–BridgePHOS as the chiral ligand. Tetrahedron, 2013, 69, 6839-6844.	1.0	58
62	A Copper-Catalyzed Reductive Defluorination of β-Trifluoromethylated Enones via Oxidative Homocoupling of Grignard Reagents. Organic Letters, 2018, 20, 1638-1642.	2.4	57
63	Allylic Alkylations with Enamine Nucleophiles. Chemical Record, 2016, 16, 2687-2696.	2.9	55
64	Rh-Catalyzed One-Pot Sequential Asymmetric Hydrogenation of α-Dehydroamino Ketones for the Synthesis of Chiral Cyclic <i>trans</i> -β-Amino Alcohols. Organic Letters, 2016, 18, 1290-1293.	2.4	55
65	Pd/Cu dual catalysis: highly enantioselective access to α-substituted α-amino acids and α-amino amides. Chemical Communications, 2018, 54, 599-602.	2.2	54
66	Chemo―and Enantioselective Hydrogenation of αâ€Formyl Enamides: An Efficient Access to Chiral αâ€Amido Aldehydes. Angewandte Chemie - International Edition, 2019, 58, 11505-11512.	7.2	54
67	Pd(<scp>ii</scp>), Ni(<scp>ii</scp>) and Co(<scp>ii</scp>)-catalyzed enantioselective additions of organoboron reagents to ketimines. Chemical Communications, 2018, 54, 10394-10404.	2.2	53
68	Stereodivergent Pd/Cu Catalysis for Asymmetric Desymmetric Alkylation of Allylic Geminal Dicarboxylates. CCS Chemistry, 2022, 4, 1720-1731.	4.6	53
69	Novel <i>C</i> ₂ -Symmetric Planar Chiral Diphosphine Ligands and Their Application in Pd-Catalyzed Asymmetric Allylic Substitutions. Journal of Organic Chemistry, 2007, 72, 6992-6997.	1.7	52
70	Mechanistic Study of Ni and Cu Dual Catalyst for Asymmetric C–C Bond Formation; Asymmetric Coupling of 1,3-Dienes with C-nucleophiles to Construct Vicinal Stereocenters. ACS Catalysis, 2021, 11, 6643-6655.	5.5	52
71	Novel C2-symmetric chiral bisoxazoline ligands in rhodium(I)-catalyzed asymmetric hydrosilylation. Tetrahedron: Asymmetry, 1996, 7, 2453-2462.	1.8	51
72	Palladium-Catalyzed Asymmetric Addition of Arylboronic Acids to Nitrostyrenes. Organic Letters, 2015, 17, 2250-2253.	2.4	51

#	Article	IF	CITATIONS
73	Direct use of allylic alcohols and allylic amines in palladium-catalyzed allylic amination. Chemical Communications, 2017, 53, 5151-5154.	2.2	51
74	Solvent-Controlled Pd(II)-Catalyzed Aerobic Chemoselective Intermolecular 1,2-Aminooxygenation and 1,2-Oxyamination of Conjugated Dienes for the Synthesis of Functionalized 1,4-Benzoxazines. Organic Letters, 2018, 20, 1608-1612.	2.4	51
75	From tropos to atropos: 5,5′-bridged 2,2′-bis(diphenylphosphino)biphenyls as chiral ligands for highly enantioselective palladium-catalyzed hydrogenation of α-phthalimide ketones. Tetrahedron Letters, 2010, 51, 2044-2047.	0.7	50
76	Cobaltâ€Catalyzed Chemo―and Enantioselective Hydrogenation of Conjugated Enynes. Angewandte Chemie - International Edition, 2021, 60, 16989-16993.	7.2	49
77	Asymmetric hydrogenation of β-amino ketones with the bimetallic complex RuPHOX-Ru as the chiral catalyst. Organic and Biomolecular Chemistry, 2013, 11, 3855.	1.5	48
78	Recent Advances in Metal-Catalyzed 1,2-Difunctionalization of Conjugated Dienes. Chinese Journal of Organic Chemistry, 2017, 37, 2250.	0.6	48
79	Copper-catalyzed asymmetric alkynylation of cyclic N-sulfonyl ketimines. Chemical Communications, 2017, 53, 5364-5367.	2.2	46
80	The synthesis of novel C2-symmetric P,N-chelation ruthenocene ligands and their application in palladium-catalyzed asymmetric allylic substitution. Tetrahedron Letters, 2007, 48, 585-588.	0.7	45
81	Atropisomeric bisoxazoline ligands with a bridge across the 5,5′-position of biphenyl for asymmetric catalysis. Tetrahedron Letters, 2007, 48, 4083-4086.	0.7	45
82	Asymmetric Hydrogenation of βâ€Secondary Amino Ketones Catalyzed by a Ruthenocenyl Phosphinoâ€oxazolineâ€ruthenium Complex (RuPHOXâ€Ru): the Synthesis of γâ€Secondary Amino Alcohols. Advanced Synthesis and Catalysis, 2015, 357, 3262-3272.	2.1	45
83	Pd(II)-Catalyzed Aerobic Intermolecular 1,2-Diamination of Conjugated Dienes: A Regio- and Chemoselective [4 + 2] Annulation for the Synthesis of Tetrahydroquinoxalines. Organic Letters, 2017, 19, 2813-2816.	2.4	45
84	lridium-Catalyzed Asymmetric Hydrogenation of β,γ-Unsaturated γ-Lactams: Scope and Mechanistic Studies. Organic Letters, 2017, 19, 1144-1147.	2.4	44
85	Palladium-Catalyzed Allylic C—H Functionalization: The Development of New Catalytic Systems. Acta Chimica Sinica, 2016, 74, 219.	0.5	44
86	Iridium-Catalyzed Asymmetric Hydrogenation of 2 <i>H</i> -Chromenes: A Highly Enantioselective Approach to Isoflavan Derivatives. Organic Letters, 2017, 19, 4884-4887.	2.4	43
87	Phosphine-oxazoline ligands with an axial-unfixed biphenyl backbone: the effects of the substituent at oxazoline ring and P phenyl ring on Pd-catalyzed asymmetric allylic alkylation. Tetrahedron, 2009, 65, 9609-9615.	1.0	42
88	The Construction of 3â€Methylâ€4â€arylpiperidines <i>via</i> a <i>trans</i> ―Perhydroindolic Acidâ€Catalyzed Asymmetric Azaâ€Diels–Alder Reaction. Advanced Synthesis and Catalysis, 2015, 357, 3627-3638.	2.1	42
89	Cobalt atalyzed Asymmetric Allylation of Cyclic Ketimines. Chemistry - A European Journal, 2018, 24, 1241-1245.	1.7	42
90	A Ferrocene-Based NH-Free Phosphine-Oxazoline Ligand for Iridium-Catalyzed Asymmetric Hydrogenation of Ketones. Organic Letters, 2018, 20, 6135-6139.	2.4	41

#	Article	IF	CITATIONS
91	Enantioselective and Diastereodivergent Access to αâ€6ubstituted αâ€Amino Acids via Dual Iridium and Copper Catalysis. Advanced Synthesis and Catalysis, 2019, 361, 1130-1139.	2.1	41
92	Novel hydrolyzable and biodegradable cationic gemini surfactants: 1,3-bis[(acyloxyalkyl)-dimethylammonio]-2-hydroxypropane dichloride. Journal of Surfactants and Detergents, 2000, 3, 167-172.	1.0	40
93	Enantioselective transfer hydrogenation of ketones with planar chiralÂruthenocene-based phosphinooxazoline ligands. Tetrahedron, 2008, 64, 3561-3566.	1.0	40
94	First catalytic enantioselective synthesis of P-stereogenic phosphoramides via kinetic resolution promoted by a chiral bicyclic imidazole nucleophilic catalyst. Tetrahedron: Asymmetry, 2012, 23, 329-332.	1.8	40
95	Stereoselective Allylic Alkylation of 1-Pyrroline-5-carboxylic Esters via a Pd/Cu Dual Catalysis. Organic Letters, 2018, 20, 6564-6568.	2.4	40
96	Palladium atalyzed Chemo―and Enantioselective Câ^'O Bond Cleavage of αâ€Acyloxy Ketones by Hydrogenolysis. Angewandte Chemie - International Edition, 2016, 55, 8444-8447.	7.2	39
97	One-pot efficient synthesis of aryl α-keto esters from aryl-ketones. Tetrahedron, 2009, 65, 9797-9800.	1.0	38
98	Pd(II)-catalyzed asymmetric Wacker-type cyclization for the preparation of 2-vinylchroman derivatives with biphenyl tetraoxazoline ligands. Tetrahedron, 2012, 68, 5209-5215.	1.0	38
99	Efficient Ru(II)-catalyzed asymmetric hydrogenation of simple ketones with C2-symmetric planar chiral metallocenyl phosphinooxazoline ligands. Tetrahedron, 2012, 68, 3295-3299.	1.0	38
100	A Soluble Bis-Chelated Gold(I) Diphosphine Compound with Strong Anticancer Activity and Low Toxicity. Journal of Medicinal Chemistry, 2013, 56, 1455-1466.	2.9	38
101	Irâ€Catalyzed Asymmetric Hydrogenation of αâ€Alkylidene Î²â€Łactams and Cyclobutanones. Chinese Journal of Chemistry, 2018, 36, 612-618.	2.6	38
102	Rhodium-catalyzed asymmetric hydrogenation of β-branched enamides for the synthesis of β-stereogenic amines. Chemical Communications, 2018, 54, 6024-6027.	2.2	38
103	Enantioselective Black rearrangement catalyzed by chiral bicyclic imidazole. Chemical Communications, 2014, 50, 1227-1230.	2.2	37
104	Rh-Catalyzed Asymmetric Hydrogenation of Cyclic α-Dehydroamino Ketones. Organic Letters, 2015, 17, 5380-5383.	2.4	36
105	The synthesis of chiral β-aryl-α,β-unsaturated amino alcohols via a Pd-catalyzed asymmetric allylic amination. Organic and Biomolecular Chemistry, 2013, 11, 7412.	1.5	35
106	Reversal in enantioselectivity for the palladium-catalyzed asymmetric allylic substitution with novel metallocene-based planar chiral diphosphine ligands. Tetrahedron Letters, 2008, 49, 1012-1015.	0.7	34
107	Iridium-catalyzed asymmetric hydrogenation of 3-substituted unsaturated oxindoles to prepare C3-mono substituted oxindoles. Tetrahedron, 2011, 67, 8445-8450.	1.0	34
108	The effects of solvent on switchable stereoselectivity: copper-catalyzed asymmetric conjugate additions using D2-symmetric biphenyl phosphoramidite ligands. Organic and Biomolecular Chemistry, 2012, 10, 5137.	1.5	34

#	Article	IF	CITATIONS
109	Asymmetric Domino Reaction of Cyclic N-Sulfonylimines and Simple Aldehydes with trans-Perhydroindolic Acid as an Organocatalyst. Organic Letters, 2014, 16, 4496-4499.	2.4	34
110	The Construction of Chiral Fused Azabicycles Using a Pd-Catalyzed Allylic Substitution Cascade and Asymmetric Desymmetrization Strategy. Organic Letters, 2017, 19, 238-241.	2.4	34
111	Rh-Catalyzed Asymmetric Hydrogenation of β-Branched Enol Esters for the Synthesis of β-Chiral Primary Alcohols. Organic Letters, 2018, 20, 108-111.	2.4	34
112	Asymmetric hydrogenation of simple ketones with planar chiral ruthenocenyl phosphinooxazoline ligands. Tetrahedron: Asymmetry, 2009, 20, 2510-2512.	1.8	33
113	Asymmetric tandem reactions of N-sulfonylimines and α,β-unsaturated aldehydes: an alternative reaction pathway to that of using saturated aldehydes. Chemical Communications, 2015, 51, 885-888.	2.2	33
114	Synthesis of Chiral α,β-Unsaturated γ-Amino Esters via Pd-Catalyzed Asymmetric Allylic Amination. Organic Letters, 2017, 19, 4251-4254.	2.4	33
115	Nickel atalyzed Asymmetric Hydrogenation of N ‣ulfonyl Imines. Angewandte Chemie, 2019, 131, 7407-7412.	1.6	33
116	Asymmetric Hydrogenation of Cyclic Dehydroamino Acids and Their Derivatives. Chinese Journal of Organic Chemistry, 2015, 35, 528.	0.6	33
117	Preparation, surface-active properties, and antimicrobial activities of bis(alkylammonium) dichlorides having a butenylen or a butynylene spacer. Journal of Surfactants and Detergents, 2001, 4, 271-277.	1.0	32
118	Pd-catalyzed asymmetric Wacker-type cyclization of o-trisubstituted allylphenols by use of tetraoxazoline ligands. Tetrahedron, 2008, 64, 9413-9416.	1.0	32
119	Asymmetric Allylic Alkylation of β-Ketoesters via C–N Bond Cleavage of <i>N</i> -Allyl- <i>N</i> -methylaniline Derivatives Catalyzed by a Nickel–Diphosphine System. ACS Catalysis, 2020, 10, 5828-5839.	5.5	32
120	Nickel/Copper ocatalyzed Asymmetric Benzylation of Aldimine Esters for the Enantioselective Synthesis of αâ€Quaternary Amino Acids. Angewandte Chemie - International Edition, 2022, 61, .	7.2	32
121	Iridiumâ€Catalyzed Asymmetric Hydrogenation of Unfunctionalized Exocyclic C=C Bonds. Chemistry - A European Journal, 2016, 22, 18354-18357.	1.7	31
122	Rh atalyzed Chemo―and Enantioselective Hydrogenation of Allylic Hydrazones. Chemistry - A European Journal, 2017, 23, 1040-1043.	1.7	31
123	Applications of Phosphoramidite Ligands in Ir-Catalyzed Asymmetric Hydrogenation Reactions. Chinese Journal of Organic Chemistry, 2016, 36, 274.	0.6	31
124	Bisoxazoline ligands with an axial-unfixed biaryl backbone: the effects of the biaryl backbone and the substituent at oxazoline ring on Cu-catalyzed asymmetric cyclopropanation. Tetrahedron: Asymmetry, 2006, 17, 767-777.	1.8	30
125	The Synthesis of <i>trans</i> â€Perhydroindolic Acids and their Application in Asymmetric Domino Reactions of Aldehyde Esters with β,γâ€Unsaturated αâ€Keto Esters. Advanced Synthesis and Catalysis, 2012, 354, 3311-3325.	2.1	30
126	1,3-Dithianes as Acyl Anion Equivalents in Pd-Catalyzed Asymmetric Allylic Substitution. Organic Letters, 2016, 18, 6296-6299.	2.4	30

#	Article	IF	CITATIONS
127	Pd(<scp>ii</scp>)-Catalyzed aerobic 1,2-difunctionalization of conjugated dienes: efficient synthesis of morpholines and 2-morpholones. Organic and Biomolecular Chemistry, 2018, 16, 5618-5625.	1.5	30
128	Copper-catalyzed asymmetric 1,4-conjugate addition of Grignard reagents to linear α,β,γ,Î′-unsaturated ketones. Chemical Communications, 2013, 49, 5292.	2.2	29
129	Cu-catalyzed amidation of halogenated imidazoles. Chemical Communications, 2014, 50, 3163.	2.2	29
130	Palladium atalyzed Addition of Arylboronic Acids to <i>para</i> ―Quinone Methides for Preparation of Diarylacetates. Advanced Synthesis and Catalysis, 2017, 359, 1028-1036.	2.1	29
131	Direct enantioselective C-acylation for the construction of a quaternary stereocenter catalyzed by a chiral bicyclic imidazole. Chemical Communications, 2017, 53, 1381-1384.	2.2	29
132	Rhodiumâ€Catalyzed Chemo―and Enantioselective Hydrogenation of Alkynylâ€Aryl Hydrazones. Advanced Synthesis and Catalysis, 2018, 360, 2228-2232.	2.1	28
133	Synthesis of Chiral α-Aminosilanes through Palladium-Catalyzed Asymmetric Hydrogenation of Silylimines. Organic Letters, 2019, 21, 1042-1045.	2.4	28
134	Asymmetric Hydrogenation of α-Boryl Enamides Enabled by Nonbonding Interactions. ACS Catalysis, 2020, 10, 3232-3240.	5.5	28
135	One Stone Two Birds—Enantioselective Bimetallic Catalysis for <scp>αâ€Amino</scp> Acid Derivatives with an Allene Unit. Chinese Journal of Chemistry, 2021, 39, 1958-1964.	2.6	28
136	Enantio―and Diastereodivergent Synthesis of Spirocycles through Dualâ€Metalâ€Catalyzed [3+2] Annulation of 2â€Vinyloxiranes with Nucleophilic Dipoles. Angewandte Chemie, 2021, 133, 25145-25153.	1.6	28
137	Novel C2-Symmetric Chiral Oxazolinyl Biaryl Ligands Bearing a Hydroxyl Group. Synlett, 2000, 2000, 239-241.	1.0	27
138	Novel hydrolyzable and biodegradable cationic gemini surfactants: Bis(ester-ammonium) dichloride having a butenylene or a butynylene spacer. Journal of Surfactants and Detergents, 2001, 4, 279-285.	1.0	27
139	From C2- to D2-symmetry: atropos phosphoramidites with a D2-symmetric backbone as highly efficient ligands in Cu-catalyzed conjugate additions. Tetrahedron Letters, 2010, 51, 3119-3122.	0.7	27
140	Iridium-catalyzed allyl–allyl cross-coupling of allylic carbonates with (E)-1,3-diarylpropenes. Chemical Communications, 2015, 51, 11834-11836.	2.2	27
141	Ir/BiphPHOX-catalyzed asymmetric hydrogenation of 3-substituted 2,5-dihydropyrroles and 2,5-dihydrothiophene 1,1-dioxides. Organic Chemistry Frontiers, 2017, 4, 1601-1605.	2.3	27
142	An <i>Atropos</i> Chiral Biphenyl Bisphosphine Ligand Bearing Only 2,2â€2â€Substituents and Its Application in Rhâ€Catalyzed Asymmetric Hydrogenation. Advanced Synthesis and Catalysis, 2018, 360, 738-743.	2.1	27
143	Cobaltâ€Catalyzed Asymmetric Hydrogenation of C=N Bonds Enabled by Assisted Coordination and Nonbonding Interactions. Angewandte Chemie, 2019, 131, 15914-15918.	1.6	27
144	Chiral Bicyclic Imidazole atalyzed Acylative Dynamic Kinetic Resolution for the Synthesis of Chiral Phthalidyl Esters. Angewandte Chemie - International Edition, 2021, 60, 1641-1645.	7.2	27

#	Article	IF	CITATIONS
145	Nickelâ€Catalyzed Asymmetric Hydrogenation of Hydrazones. European Journal of Organic Chemistry, 2021, 2021, 3421-3425.	1.2	27
146	Synthesis of axially chiral C10-BridgePHOS oxides and their use as organocatalysts in enantioselective allylations of aldehydes. Tetrahedron, 2013, 69, 8161-8168.	1.0	26
147	P-stereogenic PNP pincer-Pd catalyzed intramolecular hydroamination of amino-1,3-dienes. Organic and Biomolecular Chemistry, 2015, 13, 2694-2702.	1.5	26
148	The Synthesis of Chiral αâ€Aryl αâ€Hydroxy Carboxylic Acids via RuPHOXâ€Ru Catalyzed Asymmetric Hydrogenation. Advanced Synthesis and Catalysis, 2017, 359, 3665-3673.	2.1	26
149	Synthesis of chiral chromanols via a RuPHOX–Ru catalyzed asymmetric hydrogenation of chromones. Chemical Communications, 2018, 54, 13571-13574.	2.2	26
150	Novel Axial Chiral Sulfur-oxazoline Ligands with a Biphenyl Backbone. Synlett, 1999, 1999, 1319-1321.	1.0	25
151	A Novel Axially Chiral Phosphine-Oxazoline Ligand with an Axis-Unfixed Biphenyl Backbone: Preparation, Complexation, and Application in an ÂAsymmetric Catalytic Reaction. Synlett, 2006, 2006, 1185-1188.	1.0	25
152	Chiral Bicyclic Imidazole Nucleophilic Catalysts: Design, Synthesis, and Application to the Kinetic Resolution of Arylalkylcarbinols. Advanced Synthesis and Catalysis, 2014, 356, 3164-3170.	2.1	25
153	Preparation of organophosphorus compounds from P–H compounds using o-(trimethylsilyl)aryl triflates as aryne precursors. Tetrahedron, 2016, 72, 333-337.	1.0	25
154	Copper (II)/RuPHOX atalyzed Enantioselective Mannichâ€Type Reaction of Glycine Schiff Bases with Cyclic Ketimines. Advanced Synthesis and Catalysis, 2018, 360, 4625-4633.	2.1	25
155	Pd-catalyzed asymmetric allylic substitution cascade using α-(pyridin-1-yl)-acetamides formed <i>in situ</i> as nucleophiles. Chemical Science, 2019, 10, 1767-1772.	3.7	25
156	Highly efficient asymmetric Michael addition of aldehyde to nitroolefin using perhydroindolic acid as a chiral organocatalyst. Organic and Biomolecular Chemistry, 2012, 10, 2840.	1.5	24
157	Cu-Catalyzed switchable synthesis of functionalized pyridines and pyrroles. Chemical Communications, 2018, 54, 9446-9449.	2.2	24
158	Selective Asymmetric Hydrogenation of Four-Membered <i>Exo</i> -α,β-Unsaturated Cyclobutanones Using RuPHOX–Ru as a Catalyst. Organic Letters, 2019, 21, 4331-4335.	2.4	24
159	Nickelâ€Catalyzed Asymmetric Hydrogenation of 2â€Amidoacrylates. Angewandte Chemie, 2020, 132, 5409-5413.	1.6	24
160	Synthesis of Chiral Î ³ -Amino Alcohols via a RuPHOX-Ru Catalyzed Asymmetric Hydrogenation of Î ² -Imide Ketones. Chinese Journal of Organic Chemistry, 2014, 34, 1766.	0.6	24
161	Iridium-Catalyzed Enantioselective and Diastereoselective Allylation of Dioxindoles: A One-Step Synthesis of 3-Allyl-3-hydroxyoxindoles. Organic Letters, 2018, 20, 6183-6187.	2.4	23
162	2-Substituted-1-(2-morpholinoethyl)-1 H -naphtho[2,3- d]imidazole-4,9-diones: Design, synthesis and antiproliferative activity. Bioorganic and Medicinal Chemistry Letters, 2018, 28, 2454-2458.	1.0	23

#	Article	IF	CITATIONS
163	Stereodivergent Pd/Cu catalysis: asymmetric alkylation of racemic symmetrical 1,3-diphenyl allyl acetates. Organic and Biomolecular Chemistry, 2021, 19, 1955-1959.	1.5	23
164	Enantioselective synthesis of chiral γ-aryl α-keto ester by copper-catalyzed 1,4-conjugate addition using D2-symmetric biphenyl phosphoramidite ligand. Tetrahedron, 2011, 67, 6197-6201.	1.0	22
165	Switchable Stereoselectivity: The Effects of Substituents on the <i>D₂</i> â€Symmetric Biphenyl Backbone of Phosphoramidites in Copperâ€Catalyzed Asymmetric Conjugate Addition Reactions with Triethylaluminium. Advanced Synthesis and Catalysis, 2012, 354, 1941-1947.	2.1	22
166	Ru-Catalyzed Asymmetric Hydrogenative/Transfer Hydrogenative Desymmetrization of Meso-Epoxy Diketones. Organic Letters, 2016, 18, 2640-2643.	2.4	22
167	Pd(<scp>ii</scp>)-Catalyzed asymmetric 1,6-conjugate addition of arylboronic acids to Meldrum's acid-derived dienes. Chemical Communications, 2018, 54, 2522-2525.	2.2	22
168	A Co(ii)-catalyzed asymmetric ring opening reaction of spiro-epoxyoxindoles with allylboron. Organic Chemistry Frontiers, 2020, 7, 862-867.	2.3	22
169	Rhodiumâ€Catalyzed Asymmetric Hydrogenation of 3â€Benzoylaminocoumarins for the Synthesis of Chiral 3â€Amino Dihydrocoumarins. Angewandte Chemie - International Edition, 2021, 60, 23602-23607.	7.2	22
170	Achiral and planar chiral ferrocene diols: preparation and complexation with titanium(IV). Journal of Organometallic Chemistry, 1999, 574, 19-23.	0.8	21
171	C2-Symmetric bipyrrolidines as organocatalysts for asymmetric Diels–Alder reactions. Tetrahedron Letters, 2009, 50, 7388-7391.	0.7	21
172	A Pd-catalyzed asymmetric allylic substitution cascade <i>via</i> an asymmetric desymmetrization for the synthesis of bicyclic dihydrofurans. Chemical Communications, 2019, 55, 13295-13298.	2.2	21
173	Synthesis of Enantiopure γâ€Lactones via a RuPHOXâ€Ru Catalyzed Asymmetric Hydrogenation of γâ€Keto Acids Advanced Synthesis and Catalysis, 2019, 361, 1146-1153.	^{5.} 2.1	21
174	Ni-Catalyzed Enantioconvergent Coupling of Epoxides with Alkenylboronic Acids: Construction of Oxindoles Bearing Quaternary Carbons. CCS Chemistry, 2020, 2, 623-631.	4.6	21
175	P-Stereogenic pincer iridium complexes: Synthesis, structural characterization and application in asymmetric hydrogenation. Journal of Organometallic Chemistry, 2015, 791, 41-45.	0.8	20
176	RuPHOX-Ru-Catalyzed Selective Asymmetric Hydrogenation of Exocyclic α,β-Unsaturated Pentanones. Organometallics, 2019, 38, 3970-3978.	1.1	20
177	Asymmetric hydrogenation of <i>γ</i> â€branched allylamines for the efficient synthesis of <i>γ</i> â€chirogenic amines. Natural Sciences, 2021, 1, e10021.	1.0	20
178	Development of the Asymmetric Hydrogenation of Enol Esters. Chinese Journal of Organic Chemistry, 2016, 36, 447.	0.6	20
179	Novel atropisomeric aminophosphine ligands with a bridge across the 5,5′-position of biphenyl for Rh(I)-catalyzed asymmetric hydrogenation. Tetrahedron Letters, 2008, 49, 4106-4109.	0.7	19
180	Synthesis of atropisomeric 5,5′-linked biphenyl bisaminophosphine ligands and their applications in asymmetric catalysis. Tetrahedron, 2009, 65, 1281-1286.	1.0	19

#	Article	IF	CITATIONS
181	lridium-catalyzed asymmetric hydrogenation of 2-substituted 1,4-benzodioxines. Tetrahedron, 2018, 74, 477-482.	1.0	19
182	Pd(OAc) ₂ -Catalyzed Asymmetric Hydrogenation of α-Iminoesters. Organic Letters, 2019, 21, 9060-9065.	2.4	19
183	Pd-Catalyzed Asymmetric Allylic Substitution Cascade of But-2-ene-1,4-diyl Dimethyl Dicarbonate for the Synthesis of Chiral 2,3-Dihydrofurans. Organic Letters, 2020, 22, 4680-4685.	2.4	19
184	Highly enantioselective copper-catalyzed allylic alkylation with atropos phosphoramidites bearing a D2-symmetric biphenyl backbone. Tetrahedron, 2010, 66, 3593-3598.	1.0	18
185	Iridiumâ€Catalyzed Asymmetric Hydrogenation of Unsaturated Piperazinâ€2â€ones. Advanced Synthesis and Catalysis, 2017, 359, 1933-1941.	2.1	18
186	Chemo―and Enantioselective Hydrogenation of αâ€Formyl Enamides: An Efficient Access to Chiral αâ€Amido Aldehydes. Angewandte Chemie, 2019, 131, 11629-11636.	1.6	18
187	Mechanistic study of the solvent-controlled Pd(ii)-catalyzed chemoselective intermolecular 1,2-aminooxygenation and 1,2-oxyamination of conjugated dienes. Organic Chemistry Frontiers, 2019, 6, 486-492.	2.3	18
188	The role of survivin in the progression of pancreatic ductal adenocarcinoma (PDAC) and a novel survivin-targeted therapeutic for PDAC. PLoS ONE, 2020, 15, e0226917.	1.1	18
189	Synthesis of Chiral Hydantoins and Thiazolidinediones <i>via</i> <scp>Iridiumâ€Catalyzed</scp> Asymmetric Hydrogenation. Chinese Journal of Chemistry, 2022, 40, 819-824.	2.6	18
190	The synthesis and application of novel C2-symmetric chiral N,N,O,O bisoxazoline ligands with a ferrocene backbone. Tetrahedron Letters, 2007, 48, 385-388.	0.7	17
191	Novel atropisomeric bisphosphine ligands with a bridge across the 5,5′-position of the biphenyl for asymmetric catalysis. Tetrahedron: Asymmetry, 2008, 19, 482-488.	1.8	17
192	Pd-catalyzed asymmetric allylic amination using easily accessible metallocenyl P,N-ligands. Organic and Biomolecular Chemistry, 2015, 13, 4248-4254.	1.5	17
193	Palladium atalyzed Chemo―and Enantioselective Câ^'O Bond Cleavage of αâ€Acyloxy Ketones by Hydrogenolysis. Angewandte Chemie, 2016, 128, 8584-8587.	1.6	17
194	An <i>Atropos</i> Biphenyl Bisphosphine Ligand with 2,2′â€ <i>tert</i> â€Butylmethylphosphino Groups for the Rhodiumâ€Catalyzed Asymmetric Hydrogenation of Enol Esters. Advanced Synthesis and Catalysis, 2018, 360, 3793-3800.	2.1	17
195	Asymmetric Hydroacylation Involving Alkene Isomerization for the Construction of C ₃ â€Chirogenic Center. Angewandte Chemie - International Edition, 2021, 60, 8997-9002.	7.2	17
196	Convenient synthesis of tropos phosphine-oxazoline ligands. Science China Chemistry, 2011, 54, 87-94.	4.2	16
197	Pd(II)-catalyzed oxidative cyclization reaction for the preparation of 2-substituted 1,2,3,4-tetrahydroquinolines with halide functionality. Tetrahedron, 2011, 67, 1501-1505.	1.0	16
198	Chiral dinuclear phthalazine bridged bisoxazoline ligands: synthesis and application in enantioselective Cu-catalyzed conjugate addition of ZnEt2 to enones. Tetrahedron Letters, 2011, 52, 2375-2378.	0.7	16

#	Article	IF	CITATIONS
199	Asymmetric Domino Double Michael Addition of Nitroolefins and Aldehyde Esters with trans-Perhydroindolic Acid as an Organocatalyst. Synthesis, 2013, 45, 1612-1623.	1.2	16
200	Desymmetrization of <i>meso-</i> Dicarbonatecyclohexene with β-Hydrazino Carboxylic Esters via a Pd-Catalyzed Allylic Substitution Cascade. Organic Letters, 2020, 22, 8836-8841.	2.4	16
201	Switching of Cation Selectivity toward Na+and K+by a New Type of pH-Responsive 16-Crown-5 in a Countercurrent Double Uphill Transport System. Journal of the American Chemical Society, 2000, 122, 6307-6308.	6.6	15
202	Regio―and Enantioselective Copperâ€Catalyzed 1,4â€Conjugate Addition of Trimethylaluminium to Linear α,β,γ,Î′â€Unsaturated Alkyl Ketones. Advanced Synthesis and Catalysis, 2016, 358, 2510-2518.	2.1	15
203	Rhodium-catalyzed intramolecular hydroacylation of 1,2-disubstituted alkenes for the synthesis of 2-substituted indanones. Tetrahedron, 2019, 75, 269-277.	1.0	15
204	Synergistic Ir/Cu Catalysis for Asymmetric Allylic Alkylation of Oxindoles: Enantio―and Diastereoselective Construction of Quaternary and Tertiary Stereocenters. Chemistry - A European Journal, 2021, 27, 10255-10260.	1.7	15
205	Efficient Synthesis of Chiral 2-Oxazolidinones via Ni-Catalyzed Asymmetric Hydrogenation. Chinese Journal of Organic Chemistry, 2020, 40, 4372.	0.6	15
206	A Pd(II)â€Catalyzed Oxidative Cyclization for the Preparation of Arylâ€Fused Sixâ€Membered Nitrogen Heterocycles with 2â€Acetoxy Functionality. Chinese Journal of Chemistry, 2013, 31, 132-138.	2.6	14
207	Phl(OAc)2-mediated alkoxyoxygenation of \hat{l}^2 , \hat{l}^3 -unsaturated ketoximes: Preparation of isoxazolines bearing two contiguous tetrasubstituted carbons. Tetrahedron Letters, 2019, 60, 1148-1152.	0.7	14
208	A step-economic and one-pot access to chiral C ^α -tetrasubstituted α-amino acid derivatives <i>via</i> a bicyclic imidazole-catalyzed direct enantioselective <i>C</i> -acylation. Chemical Science, 2020, 11, 4801-4807.	3.7	14
209	Efficient bimetallic titanium catalyst for carbonyl-ene reaction. Tetrahedron Letters, 2009, 50, 6672-6675.	0.7	13
210	Recent advances in the Pd(II)-catalyzed asymmetric addition of arylboronic acids to electron-deficient olefins. Tetrahedron Letters, 2018, 59, 4055-4062.	0.7	13
211	Chiral Bicyclic Imidazole atalyzed Direct Enantioselective Câ€Acylation for the Synthesis of 2â€Oxindoles Bearing a Quaternary Stereocenter. Asian Journal of Organic Chemistry, 2019, 8, 1024-1028.	1.3	13
212	Synthesis of chiral Î ³ -lactones via a RuPHOX-Ru catalyzed asymmetric hydrogenation of aroylacrylic acids. Tetrahedron, 2019, 75, 3643-3649.	1.0	13
213	Development of a new bicyclic imidazole nucleophilic organocatalyst for direct enantioselective C-acylation. Organic Chemistry Frontiers, 2019, 6, 3969-3972.	2.3	13
214	Pd-Catalyzed Asymmetric Allylic Substitution Cascade of Substituted 4-Hydroxy-2 <i>H</i> -pyrones with <i>meso</i> -Allyl Dicarbonates. Organic Letters, 2022, 24, 3440-3444.	2.4	13
215	Synthesis of Chiral γ-Lactams via in Situ Elimination/Iridium-Catalyzed Asymmetric Hydrogenation of Racemic γ-Hydroxy γ-Lactams. Organic Letters, 2017, 19, 1886-1889.	2.4	12
216	The application of the chiral ligand DTBM-SegPHOS in asymmetric hydrogenation. Research on Chemical Intermediates, 2019, 45, 5959-5974.	1.3	12

#	Article	IF	CITATIONS
217	Pdâ€Catalyzed Asymmetric Allylic Substitution Annulation Using Enolizable Ketimines as Nucleophiles: An Alternative Approach to Chiral Tetrahydroindoles. Advanced Synthesis and Catalysis, 2020, 362, 2059-2069.	2.1	12
218	Synthesis of Chiral 2-Substituted 1,4-Benzoxazin-3-ones via Iridium-Catalyzed Enantioselective Hydrogenation of Benzoxazinones. Organic Letters, 2021, 23, 5373-5377.	2.4	12
219	Cu-catalyzed asymmetric addition of alcohols to β,γ-alkynyl-α-imino esters for the construction of linear chiral N,O-ketals. Nature Communications, 2022, 13, 400.	5.8	12
220	Azoleâ€Directed Cobaltâ€Catalyzed Asymmetric Hydrogenation of Alkenes. Chemistry - A European Journal, 2022, 28, .	1.7	12
221	Perfect Control of Diastereomeric Complexation ofC2-Symetric Chiral 1,1′-Bis(oxazolinyl)ferrocene Ligands. Chemistry Letters, 1999, 28, 243-244.	0.7	11
222	Synthesis of Heterocycles via Palladium-Catalyzed Wacker-Type Oxidative Cyclization Reactions of Hydroxy- and Amino-Alkenes. Topics in Heterocyclic Chemistry, 2013, , 77-107.	0.2	11
223	Rh-catalyzed asymmetric hydrogenation of racemic aldimines via dynamic kinetic resolution. Tetrahedron, 2016, 72, 5541-5547.	1.0	11
224	Preparation of isoindolinones via a palladium-catalyzed diamination. Tetrahedron Letters, 2017, 58, 285-288.	0.7	11
225	Pd ^{II} â€Catalyzed Oxidative Tandem azaâ€Wacker/Heck Cyclization for the Construction of Fused 5,6â€Bicyclic N,Oâ€Heterocycles. Chemistry - an Asian Journal, 2018, 13, 1897-1901.	1.7	11
226	Catalytic Asymmetric Synthesis of the anti OVIDâ€19 Drug Remdesivir. Angewandte Chemie, 2020, 132, 21000-21005.	1.6	11
227	Pd-Catalyzed Three-Component Chemospecific Allylic Substitution Cascade for the Synthesis of <i>N</i> -Carbonylmethylene-2-Pyridones. Acta Chimica Sinica, 2019, 77, 993.	0.5	11
228	Unexpected reactions of ferrocene acetal derived from tartaric acid with alkyllithium: competition between proton abstraction and nucleophilic attack. Tetrahedron, 2006, 62, 9038-9042.	1.0	10
229	Temperature-controlled switchable preparation of ferrocene bis(oxazoline-phosphine) ligands with different planar chiralities and their coordination behaviors. Tetrahedron, 2015, 71, 5112-5118.	1.0	10
230	Pd(II)-catalyzed aerobic intermolecular 1,4-diamination of conjugated dienes: A regioselective [4+4] annulation for the construction of medium-ring 1,6-benzodiazocine derivatives. Tetrahedron Letters, 2017, 58, 2640-2643.	0.7	10
231	Cobaltâ€Catalyzed Chemo―and Enantioselective Hydrogenation of Conjugated Enynes. Angewandte Chemie, 2021, 133, 17126-17130.	1.6	10
232	Pd(II)-Catalyzed Enantioselective Ring-Contraction for the Construction of 1,4-Benzoxazines. Journal of Organic Chemistry, 2021, 86, 16573-16581.	1.7	10
233	One-pot sequential asymmetric hydrogenation of β-aryl-β-aryloxy acroleins. Organic and Biomolecular Chemistry, 2016, 14, 7099-7102.	1.5	9
234	A new and convenient approach for the synthesis of P-stereogenic intermediates bearing a tert-butyl(methyl)phosphino group. Research on Chemical Intermediates, 2017, 43, 4959-4966.	1.3	9

#	Article	IF	CITATIONS
235	Ni(II)/mono-RuPHOX-catalyzed asymmetric addition of alkenylboronic acids to cyclic aldimines. Tetrahedron Letters, 2018, 59, 1573-1575.	0.7	9
236	Benzylamine as Hydrogen Transfer Agent: Cobaltâ€Catalyzed Chemoselective C=C Bond Reduction of βâ€Trifluoromethylated α,βâ€Unsaturated Ketones via 1,5â€Hydrogen Transfer. Chemistry - an Asian Journal, 2019, 14, 3835-3839.	1.7	9
237	Ir-catalyzed asymmetric hydrogenation of 3-arylindenones for the synthesis of chiral 3-arylindanones. Tetrahedron, 2021, 84, 132003.	1.0	9
238	Asymmetric hydrogenation for the synthesis of 2-substituted chiral morpholines. Chemical Science, 2021, 12, 15061-15066.	3.7	9
239	Recent advances of remote selective C–H activation: Ligand and template design. Chinese Journal of Catalysis, 2016, 37, 98-101.	6.9	8
240	Synthesis of (+)-salvianolic acid A from sodium Danshensu. Tetrahedron, 2018, 74, 5996-6002.	1.0	8
241	Development of Earth-Abundant Metals-Catalyzed Enantioselective Alkenylations Using Alkenyl Metal Reagents. Acta Chimica Sinica, 2021, 79, 1331.	0.5	8
242	Photodimerisation of a styrylpyrazine amphiphile suppresses the release of glucose entrapped in its mixed vesicle with DPPC. Chemical Communications, 2000, , 231-232.	2.2	7
243	Stereodivergent Pd/Cu Catalysis for the Construction of Allenyl Axial Chirality and Central Chirality. Chinese Journal of Organic Chemistry, 2021, 41, 3337.	0.6	7
244	Synthesis and biological evaluation of naphthoquinone phenacylimidazolium derivatives. Bioorganic and Medicinal Chemistry Letters, 2021, 41, 127977.	1.0	7
245	Kinetic resolution of azaflavanones via a RuPHOX-Ru catalyzed asymmetric hydrogenation. Organic Chemistry Frontiers, 0, , .	2.3	7
246	Development of Nickel-Catalyzed Cross-Coupling of Alcohol Derivatives to Construct Carbon-Carbon Bonds. Chinese Journal of Organic Chemistry, 2021, 41, 4208.	0.6	7
247	RuPHOX–Ru catalyzed asymmetric hydrogenation of α-substituted tetralones <i>via</i> a dynamic kinetic resolution. Chemical Communications, 2022, 58, 4905-4908.	2.2	7
248	Nickel/Copperâ€Cocatalyzed Asymmetric Benzylation of Aldimine Esters for the Enantioselective Synthesis of αâ€Quaternary Amino Acids. Angewandte Chemie, 2022, 134, .	1.6	7
249	Palladium(II)-catalyzed aerobic intramolecular allylic C H activation for the synthesis of indolines. Tetrahedron, 2017, 73, 1904-1910.	1.0	6
250	Rh(I)-catalyzed ring-opening of cyclobutanols via C–C bond activation: Synthesis of cis-olefin with a remote aldehyde. Tetrahedron, 2019, 75, 130563.	1.0	6
251	Construction of Chiral-Fused Tricyclic Î ³ -Lactams via a trans-Perhydroindolic Acid-Catalyzed Asymmetric Domino Reaction. Organic Letters, 2017, 19, 2925-2928.	2.4	5
252	Synthesis of (2 <i>S</i> ,3 <i>aR</i> ,7 <i>aS</i>)-Benzyl Octahydro-1 <i>H</i> -indole-2-carboxylate. Chinese Journal of Organic Chemistry, 2013, 33, 1573.	0.6	5

#	Article	IF	CITATIONS
253	Stereodivergent Desymmetrization of Simple Dicarboxylates via Branch‧elective Pd/Cu Catalyzed Allylic Substitution. Chemistry - A European Journal, 2022, 28, .	1.7	5
254	Chiral Bicyclic Imidazole-Catalyzed Direct Enantioselective <i>C</i> -Acetylation of Indolones. CCS Chemistry, 2023, 5, 361-371.	4.6	5
255	<scp>Palladium atalyzed Longâ€Range</scp> Isomerization of Aryl Olefins. Chinese Journal of Chemistry, 2022, 40, 2269-2275.	2.6	5
256	Novel chiral bisoxazoline ligands with a bipyridinyl backbone: preparation and interesting complexation behavior. Tetrahedron Letters, 2011, 52, 2844-2848.	0.7	4
257	Chiral Bicyclic Imidazole atalyzed Acylative Dynamic Kinetic Resolution for the Synthesis of Chiral Phthalidyl Esters. Angewandte Chemie, 2021, 133, 1665-1669.	1.6	4
258	Rhodiumâ€Catalyzed Asymmetric Hydrogenation of 3â€Benzoylaminocoumarins for the Synthesis of Chiral 3â€Amino Dihydrocoumarins. Angewandte Chemie, 2021, 133, 23794.	1.6	4
259	Ni-Catalyzed Enantioconvergent Coupling of Epoxides with Alkenylboronic Acids: Construction of Oxindoles Bearing Quaternary Carbons. CCS Chemistry, 2020, 2, 623-631.	4.6	4
260	Chemical Synthesis of the Anti OVIDâ€19 Drug Remdesivir. Current Protocols, 2021, 1, e303.	1.3	4
261	An Efficient Asymmetric Domino Reaction of Amino Aldehyde to <i>β</i> , <i>γ</i> â€Unsaturated <i>α</i> â€Keto Esters Using <i>trans</i> â€Perhydroindolic Acid as a Chiral Organocatalyst. Chinese Journal of Chemistry, 2012, 30, 2681-2687.) 2.6	3
262	New and convenient approach for synthesis of metconazole. Research on Chemical Intermediates, 2017, 43, 6293-6298.	1.3	3
263	Copperâ€Catalyzed Regioselective [3+3] Annulations of Alkynyl Ketimines with <i>α</i> â€Cyano Ketones: the Synthesis of Polysubstituted 4 <i>H</i> â€Pyran Derivatives with a CF ₃ â€Containing Quaternary Center. Chemistry - A European Journal, 2022, 28, .	1.7	3
264	DFT Study of the Strong Solvent Effects in the Cuâ€Catalyzed Asymmetric Conjugate Addition Reaction. Journal of the Chinese Chemical Society, 2018, 65, 346-351.	0.8	2
265	Chiral Polymetallic Catalysts and Their Applications in Asymmetric Catalysis. Chinese Journal of Organic Chemistry, 2013, 33, 749.	0.6	1
266	Synthesis of Chiral 5-Aryl-2-oxazolidinones via an Ir-BiphPHOX Catalyzed Enantioselective Hydrogenation. Chinese Journal of Organic Chemistry, 2022, 42, 1747.	0.6	1
267	Frontispiece: Cobalt atalyzed Asymmetric Allylation of Cyclic Ketimines. Chemistry - A European Journal, 2018, 24, .	1.7	0
268	Inside Cover: Ir-Catalyzed Asymmetric Hydrogenation of α-Alkylidene β-Lactams and Cyclobutanones (Chin. J. Chem. 7/2018). Chinese Journal of Chemistry, 2018, 36, 566-566.	2.6	0
269	Innenrücktitelbild: Nickel atalyzed Asymmetric Hydrogenation of <i>N</i> ulfonyl Imines (Angew.) Tj ETQ	1.6 0.78	34314 rgBT
270	Frontispiz: Catalytic Asymmetric Synthesis of the anti OVIDâ€19 Drug Remdesivir. Angewandte Chemie, 2020, 132, .	1.6	0

#	Article	IF	CITATIONS
271	Frontispiece: Catalytic Asymmetric Synthesis of the antiâ€COVIDâ€19 Drug Remdesivir. Angewandte Chemie - International Edition, 2020, 59, .	7.2	0
272	The design and synthesis of a novel chiral 1,1′-disubsitituted ruthenocenyl phosphine–oxazoline ligand. Research on Chemical Intermediates, 2020, 46, 5101-5115.	1.3	0
273	Frontispiece: Synergistic Pd/Cu Catalysis in Organic Synthesis. Chemistry - A European Journal, 2020, 26, .	1.7	0
274	Asymmetric Hydroacylation Involving Alkene Isomerization for the Construction of C 3 hirogenic Center. Angewandte Chemie, 2021, 133, 9079-9084.	1.6	0
275	On-and-off Release Control of Glucose Entrapped in Vesicles Produced from a Styrylpyrazine-Derived Amphiphile and DPPC by UV Irradiation. Journal of Japan Oil Chemists' Society, 2000, 49, 271-274,279.	0.3	0
276	1.1.4 Iridium/Zinc and Iridium/Copper Dual Catalysis. , 2020, , .		0
277	Title is missing!. , 2020, 15, e0226917.		0
278	Title is missing!. , 2020, 15, e0226917.		0
279	Title is missing!. , 2020, 15, e0226917.		0
280	Title is missing!. , 2020, 15, e0226917.		0