List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4688034/publications.pdf

Version: 2024-02-01

#	Article	IF	CITATIONS
1	Human cytomegalovirus forms phase-separated compartments at viral genomes to facilitate viral replication. Cell Reports, 2022, 38, 110469.	6.4	27
2	DNA origami signposts for identifying proteins on cell membranes by electron cryotomography. Cell, 2021, 184, 1110-1121.e16.	28.9	43
3	<i>In Vitro</i> Viral Evolution Identifies a Critical Residue in the Alphaherpesvirus Fusion Glycoprotein B Ectodomain That Controls gH/gL-Independent Entry. MBio, 2021, 12, .	4.1	14
4	Correlative super-resolution fluorescence and electron cryo-microscopy based on cryo-SOFI. Methods in Cell Biology, 2021, 162, 253-271.	1.1	3
5	Conformational changes in Lassa virus L protein associated with promoter binding and RNA synthesis activity. Nature Communications, 2021, 12, 7018.	12.8	26
6	Human Adenovirus Type 5 Infection Leads to Nuclear Envelope Destabilization and Membrane Permeability Independently of Adenovirus Death Protein. International Journal of Molecular Sciences, 2021, 22, 13034.	4.1	2
7	The prefusion structure of herpes simplex virus glycoprotein B. Science Advances, 2020, 6, .	10.3	50
8	A molecular pore spans the double membrane of the coronavirus replication organelle. Science, 2020, 369, 1395-1398.	12.6	372
9	A Technical Introduction to Transmission Electron Microscopy for Softâ€Matter: Imaging, Possibilities, Choices, and Technical Developments. Small, 2020, 16, e1906198.	10.0	58
10	The use of sonicated lipid vesicles for mass spectrometry of membrane protein complexes. Nature Protocols, 2020, 15, 1690-1706.	12.0	30
11	Cellular Electron Cryo-Tomography to Study Virus-Host Interactions. Annual Review of Virology, 2020, 7, 239-262.	6.7	14
12	Fluorescent protein tagging of adenoviral proteins pV and pIX reveals †late virion accumulation compartment'. PLoS Pathogens, 2020, 16, e1008588.	4.7	11
13	Herpesvirus membrane fusion – a team effort. Current Opinion in Structural Biology, 2020, 62, 112-120.	5.7	19
14	Structural and functional characterization of the severe fever with thrombocytopenia syndrome virus L protein. Nucleic Acids Research, 2020, 48, 5749-5765.	14.5	44
15	Protein interactions and consensus clustering analysis uncover insights into herpesvirus virion structure and function relationships. PLoS Biology, 2019, 17, e3000316.	5.6	18
16	Cryo-SOFI enabling low-dose super-resolution correlative light and electron cryo-microscopy. Proceedings of the National Academy of Sciences of the United States of America, 2019, 116, 4804-4809.	7.1	68
17	Conserved Central Intraviral Protein Interactome of the <i>Herpesviridae</i> Family. MSystems, 2019, 4, .	3.8	4
18	Combined 1H-Detected Solid-State NMR Spectroscopy and Electron Cryotomography to Study Membrane Proteins across Resolutions in Native Environments. Structure, 2018, 26, 161-170.e3.	3.3	51

#	Article	IF	CITATIONS
19	Protein assemblies ejected directly from native membranes yield complexes for mass spectrometry. Science, 2018, 362, 829-834.	12.6	155
20	Editorial Overview. Current Opinion in Virology, 2018, 31, iii-v.	5.4	0
21	The 2018 correlative microscopy techniques roadmap. Journal Physics D: Applied Physics, 2018, 51, 443001.	2.8	99
22	Electron cryo-tomography captures macromolecular complexes in native environments. Current Opinion in Structural Biology, 2017, 46, 149-156.	5.7	27
23	Cellular electron cryo tomography and in situ sub-volume averaging reveal the context of microtubule-based processes. Journal of Structural Biology, 2017, 197, 181-190.	2.8	39
24	Native structure of a retroviral envelope protein and its conformational change upon interaction with the target cell. Journal of Structural Biology, 2017, 197, 172-180.	2.8	29
25	Electron Bio-Imaging Centre (eBIC): the UK national research facility for biological electron microscopy. Acta Crystallographica Section D: Structural Biology, 2017, 73, 488-495.	2.3	24
26	Multi-layered control of Galectin-8 mediated autophagy during adenovirus cell entry through a conserved PPxY motif in the viral capsid. PLoS Pathogens, 2017, 13, e1006217.	4.7	62
27	HVint: A Strategy for Identifying Novel Protein-Protein Interactions in Herpes Simplex Virus Type 1. Molecular and Cellular Proteomics, 2016, 15, 2939-2953.	3.8	17
28	Model for the architecture of caveolae based on a flexible, net-like assembly of Cavin1 and Caveolin discs. Proceedings of the National Academy of Sciences of the United States of America, 2016, 113, E8069-E8078.	7.1	84
29	Towards correlative superâ€resolution fluorescence and electron cryoâ€microscopy. Biology of the Cell, 2016, 108, 245-258.	2.0	93
30	Two distinct trimeric conformations of natively membrane-anchored full-length herpes simplex virus 1 glycoprotein B. Proceedings of the National Academy of Sciences of the United States of America, 2016, 113, 4176-4181.	7.1	93
31	Crystal Structure of the Herpesvirus Nuclear Egress Complex Provides Insights into Inner Nuclear Membrane Remodeling. Cell Reports, 2015, 13, 2645-2652.	6.4	80
32	Structural Basis of Vesicle Formation at the Inner Nuclear Membrane. Cell, 2015, 163, 1692-1701.	28.9	180
33	The Amphipathic Helix of Adenovirus Capsid Protein VI Contributes to Penton Release and Postentry Sorting. Journal of Virology, 2015, 89, 2121-2135.	3.4	25
34	A national facility for biological cryo-electron microscopy. Acta Crystallographica Section D: Biological Crystallography, 2015, 71, 127-135.	2.5	22
35	Outcome of the First wwPDB Hybrid/Integrative Methods Task Force Workshop. Structure, 2015, 23, 1156-1167.	3.3	159
36	Correlative in-resin super-resolution and electron microscopy using standard fluorescent proteins. Scientific Reports, 2015, 5, 9583.	3.3	81

#	Article	IF	CITATIONS
37	Fluorescence cryo-microscopy: current challenges and prospects. Current Opinion in Chemical Biology, 2014, 20, 86-91.	6.1	79
38	Critical Step-by-Step Approaches Toward Correlative Fluorescence/Soft X-Ray Cryo-Microscopy of Adherent Mammalian Cells. Methods in Cell Biology, 2014, 124, 179-216.	1.1	13
39	The full-length cell–cell fusogen EFF-1 is monomeric and upright on the membrane. Nature Communications, 2014, 5, 3912.	12.8	40
40	A 3D cellular context for the macromolecular world. Nature Structural and Molecular Biology, 2014, 21, 841-845.	8.2	47
41	The Nucleocapsid Domain of Gag Is Dispensable for Actin Incorporation into HIV-1 and for Association of Viral Budding Sites with Cortical F-Actin. Journal of Virology, 2014, 88, 7893-7903.	3.4	23
42	Targeting of Viral Capsids to Nuclear Pores in a Cellâ€Free Reconstitution System. Traffic, 2014, 15, 1266-1281.	2.7	19
43	Extracellular Vesicles: A Platform for the Structure Determination of Membrane Proteins by Cryo-EM. Structure, 2014, 22, 1687-1692.	3.3	39
44	High-precision correlative fluorescence and electron cryo microscopy using two independent alignment markers. Ultramicroscopy, 2014, 143, 41-51.	1.9	107
45	Super-Resolution Microscopy Using Standard Fluorescent Proteins in Intact Cells under Cryo-Conditions. Nano Letters, 2014, 14, 4171-4175.	9.1	121
46	Editorial on Correlative microscopy. Ultramicroscopy, 2014, 143, 1-2.	1.9	4
47	Multimodal nanoparticles as alignment and correlation markers in fluorescence/soft X-ray cryo-microscopy/tomography of nucleoplasmic reticulum and apoptosis in mammalian cells. Ultramicroscopy, 2014, 146, 46-54.	1.9	38
48	A cool hybrid approach to the herpesvirus †life' cycle. Current Opinion in Virology, 2014, 5, 42-49.	5.4	33
49	The Structure of Herpesvirus Fusion Glycoprotein B-Bilayer Complex Reveals the Protein-Membrane and Lateral Protein-Protein Interaction. Structure, 2013, 21, 1396-1405.	3.3	47
50	Characterization of herpes simplex virus type 1 <scp>L</scp> â€particle assembly and egress in hippocampal neurones by electron cryoâ€tomography. Cellular Microbiology, 2013, 15, 285-291.	2.1	32
51	HIV-1 Biogenesis Studied by Cellular Cryo-Electron Tomography and Biochemical in vitro Reconstitution. Microscopy and Microanalysis, 2012, 18, 50-51.	0.4	23
52	Correlative VIS-fluorescence and soft X-ray cryo-microscopy/tomography of adherent cells. Journal of Structural Biology, 2012, 177, 193-201.	2.8	98
53	Conserved Eukaryotic Fusogens Can Fuse Viral Envelopes to Cells. Science, 2011, 332, 589-592.	12.6	75
54	Eisosome proteins assemble into a membrane scaffold. Journal of Cell Biology, 2011, 195, 889-902.	5.2	103

4

#	Article	IF	CITATIONS
55	Cryo Electron Tomography of Herpes Simplex Virus during Axonal Transport and Secondary Envelopment in Primary Neurons. PLoS Pathogens, 2011, 7, e1002406.	4.7	52
56	Studying membrane fusion at molecular resolution. Acta Crystallographica Section A: Foundations and Advances, 2011, 67, C187-C188.	0.3	0
57	Viral fusion: how Flu induces dimples on liposomes. EMBO Journal, 2010, 29, 1165-1166.	7.8	1
58	Electron Cryotomography of Tula Hantavirus Suggests a Unique Assembly Paradigm for Enveloped Viruses. Journal of Virology, 2010, 84, 4889-4897.	3.4	124
59	The m74 Gene Product of Murine Cytomegalovirus (MCMV) Is a Functional Homolog of Human CMV gO and Determines the Entry Pathway of MCMV. Journal of Virology, 2010, 84, 4469-4480.	3.4	43
60	Cryo Electron Tomography of Native HIV-1 Budding Sites. PLoS Pathogens, 2010, 6, e1001173.	4.7	119
61	The Three-Dimensional Organization of Polyribosomes in Intact Human Cells. Molecular Cell, 2010, 39, 560-569.	9.7	149
62	Infection of neurons and encephalitis after intracranial inoculation of herpes simplex virus requires the entry receptor nectin-1. Proceedings of the National Academy of Sciences of the United States of America, 2009, 106, 17916-17920.	7.1	85
63	Electron Cryo-Microscopy and Single-Particle Averaging of Rift Valley Fever Virus: Evidence for G _N -G _C Clycoprotein Heterodimers. Journal of Virology, 2009, 83, 3762-3769.	3.4	112
64	Adding a spatial dimension to the proteome. Nature Methods, 2009, 6, 798-800.	19.0	2
65	SHORT COMMUNICATION: Microcarriers for highâ€pressure freezing and cryosectioning of adherent cells. Journal of Microscopy, 2008, 230, 288-296.	1.8	13
66	Three-Dimensional Analysis of Budding Sites and Released Virus Suggests a Revised Model for HIV-1 Morphogenesis. Cell Host and Microbe, 2008, 4, 592-599.	11.0	208
67	Native 3D intermediates of membrane fusion in herpes simplex virus 1 entry. Proceedings of the National Academy of Sciences of the United States of America, 2008, 105, 10559-10564.	7.1	152
68	Insights into bunyavirus architecture from electron cryotomography of Uukuniemi virus. Proceedings of the National Academy of Sciences of the United States of America, 2008, 105, 2375-2379.	7.1	96
69	Simian Virus 40 Depends on ER Protein Folding and Quality Control Factors for Entry into Host Cells. Cell, 2007, 131, 516-529.	28.9	285
70	Structure of complex viruses and virus-infected cells by electron cryo tomography. Current Opinion in Microbiology, 2006, 9, 437-442.	5.1	57
71	The Mechanism of HIV-1 Core Assembly: Insights from Three-Dimensional Reconstructions of Authentic Virions. Structure, 2006, 14, 15-20.	3.3	188
72	Cryo-Electron Tomographic Structure of an Immunodeficiency Virus Envelope Complex In Situ. PLoS Pathogens, 2006, 2, e83.	4.7	205

#	Article	IF	CITATIONS
73	Resolution Assessment in Electron Tomography: a Cross-Validation Approach. Microscopy and Microanalysis, 2005, 11, .	0.4	1
74	A resolution criterion for electron tomography based on cross-validation. Journal of Structural Biology, 2005, 151, 117-129.	2.8	114
75	Three-Dimensional Structure of Herpes Simplex Virus from Cryo-Electron Tomography. Science, 2003, 302, 1396-1398.	12.6	507
76	Prospects of electron cryotomography to visualize macromolecular complexes inside cellular compartments: implications of crowding. Biophysical Chemistry, 2002, 100, 577-591.	2.8	102
77	Title is missing!. Journal of Applied Phycology, 2001, 13, 79-87.	2.8	59
78	Title is missing!. , 2001, 13, 89-93.		35
79	Ketocarotenoid Biosynthesis Outside of Plastids in the Unicellular Green Alga Haematococcus pluvialis. Journal of Biological Chemistry, 2001, 276, 6023-6029.	3.4	138
80	Phytoene Desaturase Is Localized Exclusively in the Chloroplast and Up-Regulated at the mRNA Level during Accumulation of Secondary Carotenoids in Haematococcus pluvialis (Volvocales,) Tj ETQq0 0 0 rgBT /Ove	rlo ¢ls 10 T	f 5 1 0457 Td (
81	Accumulation of secondary carotenoids in flagellates ofHaematococcus pluvialis(Chlorophyta) is accompanied by an increase in per unit chlorophyll productivity of photosynthesis. European Journal of Phycology, 2000, 35, 75-82.	2.0	50
82	Accumulation of secondary carotenoids in flagellates of Haematococcus pluvialis (Chlorophyta) is accompanied by an increase in per unit chlorophyll productivity of photosynthesis. European Journal of Phycology, 2000, 35, 75-82.	2.0	1
83	Insigths Into Secondary Carotenoid Synthesis in the Green Algae Haematococcus Pluvialis. , 1998, , 3285-3288.		0
84	Secondary carotenoid accumulation in flagellates of the green algaHaematococcus lacustris. European Journal of Phycology, 1997, 32, 387-392.	2.0	45
85	Secondary carotenoid accumulation in flagellates of the green alga Haematococcus lacustris. European Journal of Phycology, 1997, 32, 387-392.	2.0	9