## **Christian Lunetta**

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4687995/publications.pdf Version: 2024-02-01



| #  | Article                                                                                                                                                                                                      | IF  | CITATIONS |
|----|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 1  | A Hexanucleotide Repeat Expansion in C9ORF72 Is the Cause of Chromosome 9p21-Linked ALS-FTD.<br>Neuron, 2011, 72, 257-268.                                                                                   | 3.8 | 3,833     |
| 2  | Frequency of the C9orf72 hexanucleotide repeat expansion in patients with amyotrophic lateral sclerosis and frontotemporal dementia: a cross-sectional study. Lancet Neurology, The, 2012, 11, 323-330.      | 4.9 | 1,039     |
| 3  | Genome-wide Analyses Identify KIF5A as a Novel ALS Gene. Neuron, 2018, 97, 1268-1283.e6.                                                                                                                     | 3.8 | 517       |
| 4  | Mutations in the Matrin 3 gene cause familial amyotrophic lateral sclerosis. Nature Neuroscience, 2014, 17, 664-666.                                                                                         | 7.1 | 398       |
| 5  | Clinical characteristics of patients with familial amyotrophic lateral sclerosis carrying the pathogenic GGGGCC hexanucleotide repeat expansion of C9ORF72. Brain, 2012, 135, 784-793.                       | 3.7 | 182       |
| 6  | Longâ€ŧerm survival in amyotrophic lateral sclerosis: A populationâ€based study. Annals of Neurology,<br>2014, 75, 287-297.                                                                                  | 2.8 | 141       |
| 7  | Masitinib as an add-on therapy to riluzole in patients with amyotrophic lateral sclerosis: a<br>randomized clinical trial. Amyotrophic Lateral Sclerosis and Frontotemporal Degeneration, 2020, 21,<br>5-14. | 1.1 | 133       |
| 8  | Amyotrophic Lateral Sclerosis Multiprotein Biomarkers in Peripheral Blood Mononuclear Cells. PLoS<br>ONE, 2011, 6, e25545.                                                                                   | 1.1 | 123       |
| 9  | Burden, depression, and anxiety in caregivers of people with amyotrophic lateral sclerosis.<br>Psychology, Health and Medicine, 2010, 15, 685-693.                                                           | 1.3 | 106       |
| 10 | Genetic counselling in ALS: facts, uncertainties and clinical suggestions. Journal of Neurology,<br>Neurosurgery and Psychiatry, 2014, 85, 478-485.                                                          | 0.9 | 99        |
| 11 | Serum C-Reactive Protein as a Prognostic Biomarker in Amyotrophic Lateral Sclerosis. JAMA<br>Neurology, 2017, 74, 660.                                                                                       | 4.5 | 96        |
| 12 | Factors predicting survival in ALS: a multicenter Italian study. Journal of Neurology, 2017, 264, 54-63.                                                                                                     | 1.8 | 96        |
| 13 | Clinical exome sequencing in earlyâ€onset generalized dystonia and largeâ€scale resequencing followâ€up.<br>Movement Disorders, 2017, 32, 549-559.                                                           | 2.2 | 94        |
| 14 | Emotional empathy in amyotrophic lateral sclerosis: a behavioural and voxel-based morphometry study. Amyotrophic Lateral Sclerosis and Frontotemporal Degeneration, 2014, 15, 21-29.                         | 1.1 | 85        |
| 15 | Structural brain correlates of cognitive and behavioral impairment in <scp>MND</scp> . Human Brain<br>Mapping, 2016, 37, 1614-1626.                                                                          | 1.9 | 84        |
| 16 | Physical activity and amyotrophic lateral sclerosis: A European populationâ€based case–control study.<br>Annals of Neurology, 2014, 75, 708-716.                                                             | 2.8 | 79        |
| 17 | C9ORF72 hexanucleotide repeat expansions in the Italian sporadic ALS population. Neurobiology of Aging, 2012, 33, 1848.e15-1848.e20.                                                                         | 1.5 | 76        |
| 18 | Microstructural white matter correlates of emotion recognition impairment in Amyotrophic Lateral Sclerosis. Cortex, 2014, 53, 1-8.                                                                           | 1.1 | 71        |

| #  | Article                                                                                                                                                                                                                                  | IF  | CITATIONS |
|----|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 19 | Polymeric biomaterials for 3D printing in medicine: An overview. Annals of 3D Printed Medicine, 2021, 2, 100011.                                                                                                                         | 1.6 | 71        |
| 20 | Randomized double-blind placebo-controlled trial of acetyl-L-carnitine for ALS. Amyotrophic Lateral Sclerosis and Frontotemporal Degeneration, 2013, 14, 397-405.                                                                        | 1.1 | 68        |
| 21 | Recent advances in amyotrophic lateral sclerosis. Journal of Neurology, 2016, 263, 1241-1254.                                                                                                                                            | 1.8 | 67        |
| 22 | Strictly monitored exercise programs reduce motor deterioration in ALS: preliminary results of a randomized controlled trial. Journal of Neurology, 2016, 263, 52-60.                                                                    | 1.8 | 67        |
| 23 | Trauma and amyotrophic lateral sclerosis: a case–control study from a populationâ€based registry.<br>European Journal of Neurology, 2012, 19, 1509-1517.                                                                                 | 1.7 | 63        |
| 24 | T helper-17 activation dominates the immunologic milieu of both amyotrophic lateral sclerosis and progressive multiple sclerosis. Clinical Immunology, 2013, 148, 79-88.                                                                 | 1.4 | 56        |
| 25 | Existential well-being and spirituality of individuals with amyotrophic lateral sclerosis is related to psychological well-being of their caregivers. Amyotrophic Lateral Sclerosis and Other Motor Neuron Disorders, 2011, 12, 105-108. | 2.3 | 55        |
| 26 | Whole-blood global DNA methylation is increased in amyotrophic lateral sclerosis independently of age of onset. Amyotrophic Lateral Sclerosis and Frontotemporal Degeneration, 2014, 15, 98-105.                                         | 1.1 | 54        |
| 27 | Structural and functional brain signatures of C9orf72 in motor neuron disease. Neurobiology of Aging, 2017, 57, 206-219.                                                                                                                 | 1.5 | 54        |
| 28 | Mitochondrial DNA copy number and D-loop region methylation in carriers of amyotrophic lateral sclerosis gene mutations. Epigenomics, 2018, 10, 1431-1443.                                                                               | 1.0 | 50        |
| 29 | The serum level of free testosterone is reduced in amyotrophic lateral sclerosis. Journal of the Neurological Sciences, 2002, 195, 67-70.                                                                                                | 0.3 | 48        |
| 30 | The Cognitive and Behavioural Profile of Amyotrophic Lateral Sclerosis: Application of the Consensus<br>Criteria. Behavioural Neurology, 2013, 27, 143-153.                                                                              | 1.1 | 44        |
| 31 | CHCH10 mutations in an Italian cohort of familial and sporadic amyotrophic lateral sclerosis patients.<br>Neurobiology of Aging, 2015, 36, 1767.e3-1767.e6.                                                                              | 1.5 | 44        |
| 32 | Impaired expression of insulinâ€like growth factorâ€1 system in skeletal muscle of amyotrophic lateral sclerosis patients. Muscle and Nerve, 2012, 45, 200-208.                                                                          | 1.0 | 43        |
| 33 | Pain in Amyotrophic Lateral Sclerosis: a psychological perspective. Neurological Sciences, 2012, 33, 1193-1196.                                                                                                                          | 0.9 | 42        |
| 34 | The MITOS system predicts long-term survival in amyotrophic lateral sclerosis. Journal of Neurology,<br>Neurosurgery and Psychiatry, 2015, 86, 1180-1185.                                                                                | 0.9 | 42        |
| 35 | Peptidylprolyl isomerase A governs TARDBP function and assembly in heterogeneous nuclear ribonucleoprotein complexes. Brain, 2015, 138, 974-991.                                                                                         | 3.7 | 40        |
| 36 | TBK1 is associated with ALS and ALS-FTD in Sardinian patients. Neurobiology of Aging, 2016, 43, 180.e1-180.e5.                                                                                                                           | 1.5 | 40        |

| #  | Article                                                                                                                                                                                                                                                                                      | IF  | CITATIONS |
|----|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 37 | Wide phenotypic spectrum of the TARDBP gene: homozygosity of A382T mutation in a patient presenting with amyotrophic lateral sclerosis, Parkinson's disease, and frontotemporal lobar degeneration, and in neurologically healthy subject. Neurobiology of Aging, 2012, 33, 1846.e1-1846.e4. | 1.5 | 38        |
| 38 | <i>TBK1</i> mutations in Italian patients with amyotrophic lateral sclerosis: genetic and functional characterisation. Journal of Neurology, Neurosurgery and Psychiatry, 2017, 88, 869-875.                                                                                                 | 0.9 | 38        |
| 39 | The Italian multicenter experience with edaravone in amyotrophic lateral sclerosis. Journal of Neurology, 2020, 267, 3258-3267.                                                                                                                                                              | 1.8 | 37        |
| 40 | Comparative Analysis of C9orf72 and Sporadic Disease in a Large Multicenter ALS Population: The Effect of Male Sex on Survival of C9orf72 Positive Patients. Frontiers in Neuroscience, 2019, 13, 485.                                                                                       | 1.4 | 35        |
| 41 | Increase in DNA methylation in patients with amyotrophic lateral sclerosis carriers of not fully penetrant <i>SOD1</i> mutations. Amyotrophic Lateral Sclerosis and Frontotemporal Degeneration, 2018, 19, 93-101.                                                                           | 1.1 | 34        |
| 42 | The unfolded protein response in amyotrophic later sclerosis: results of a phase 2 trial. Brain, 2021,<br>144, 2635-2647.                                                                                                                                                                    | 3.7 | 33        |
| 43 | Erythropoietin in amyotrophic lateral sclerosis: a multicentre, randomised, double blind, placebo<br>controlled, phase III study. Journal of Neurology, Neurosurgery and Psychiatry, 2015, 86, 879-886.                                                                                      | 0.9 | 32        |
| 44 | Brain MR Imaging in Patients with Lower Motor Neuron–Predominant Disease. Radiology, 2016, 280,<br>545-556.                                                                                                                                                                                  | 3.6 | 32        |
| 45 | Focus on the heterogeneity of amyotrophic lateral sclerosis. Amyotrophic Lateral Sclerosis and<br>Frontotemporal Degeneration, 2020, 21, 485-495.                                                                                                                                            | 1.1 | 32        |
| 46 | Exploring motor and visual imagery in Amyotrophic Lateral Sclerosis. Experimental Brain Research, 2013, 226, 537-547.                                                                                                                                                                        | 0.7 | 31        |
| 47 | miR-129-5p: A key factor and therapeutic target in amyotrophic lateral sclerosis. Progress in<br>Neurobiology, 2020, 190, 101803.                                                                                                                                                            | 2.8 | 31        |
| 48 | Decreased Levels of Foldase and Chaperone Proteins Are Associated with an Early-Onset Amyotrophic<br>Lateral Sclerosis. Frontiers in Molecular Neuroscience, 2017, 10, 99.                                                                                                                   | 1.4 | 30        |
| 49 | Mutation in the senataxin gene found in a patient affected by familial ALS with juvenile onset and slow progression. Amyotrophic Lateral Sclerosis and Other Motor Neuron Disorders, 2011, 12, 228-230.                                                                                      | 2.3 | 28        |
| 50 | The Peripheral Nervous System in Amyotrophic Lateral Sclerosis: Opportunities for Translational Research. Frontiers in Neuroscience, 2019, 13, 601.                                                                                                                                          | 1.4 | 28        |
| 51 | Extrapyramidal and cognitive signs in amyotrophic lateral sclerosis: A population based<br>cross-sectional study. Amyotrophic Lateral Sclerosis and Frontotemporal Degeneration, 2015, 16,<br>324-330.                                                                                       | 1.1 | 26        |
| 52 | Trauma and amyotrophic lateral sclerosis: a european population-based case-control study from the<br>EURALS consortium. Amyotrophic Lateral Sclerosis and Frontotemporal Degeneration, 2018, 19, 118-125.                                                                                    | 1.1 | 26        |
| 53 | Reduced mitochondrial D-loop methylation levels in sporadic amyotrophic lateral sclerosis. Clinical Epigenetics, 2020, 12, 137.                                                                                                                                                              | 1.8 | 26        |
| 54 | Neurofilament light chain and C reactive protein explored as predictors of survival in amyotrophic lateral sclerosis. Journal of Neurology, Neurosurgery and Psychiatry, 2020, 91, 436-437.                                                                                                  | 0.9 | 25        |

| #  | Article                                                                                                                                                                                                         | IF  | CITATIONS |
|----|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 55 | Unraveling gene expression profiles in peripheral motor nerve from amyotrophic lateral sclerosis patients: insights into pathogenesis. Scientific Reports, 2016, 6, 39297.                                      | 1.6 | 24        |
| 56 | BDNF Serum Levels with Respect to Multidimensional Assessment in Amyotrophic Lateral Sclerosis.<br>Neurodegenerative Diseases, 2016, 16, 192-198.                                                               | 0.8 | 24        |
| 57 | Blood trace metals in a sporadic amyotrophic lateral sclerosis geographical cluster. BioMetals, 2017, 30, 355-365.                                                                                              | 1.8 | 24        |
| 58 | The cognitive and behavioural profile of amyotrophic lateral sclerosis: application of the consensus criteria. Behavioural Neurology, 2013, 27, 143-53.                                                         | 1.1 | 24        |
| 59 | Novel <scp>FUS</scp> mutations identified through molecular screening in a large cohort of familial and sporadic amyotrophic lateral sclerosis. European Journal of Neurology, 2015, 22, 1474-1481.             | 1.7 | 23        |
| 60 | Amyotrophic Lateral Sclerosis Survival Score (ALS-SS): A simple scoring system for early prediction of patient survival. Amyotrophic Lateral Sclerosis and Frontotemporal Degeneration, 2016, 17, 93-100.       | 1.1 | 23        |
| 61 | HSC70 expression is reduced in lymphomonocytes of sporadic ALS patients and contributes to TDP-43 accumulation. Amyotrophic Lateral Sclerosis and Frontotemporal Degeneration, 2020, 21, 51-62.                 | 1.1 | 22        |
| 62 | Phosphorylated TDP-43 aggregates in peripheral motor nerves of patients with amyotrophic lateral sclerosis. Brain, 2022, 145, 276-284.                                                                          | 3.7 | 22        |
| 63 | The experience of meditation for people with amyotrophic lateral sclerosis and their caregivers – a qualitative analysis. Psychology, Health and Medicine, 2016, 21, 762-768.                                   | 1.3 | 21        |
| 64 | Coexistence of variants in TBK1 and in other ALS-related genes elucidates an oligogenic model of pathogenesis in sporadic ALS. Neurobiology of Aging, 2019, 84, 239.e9-239.e14.                                 | 1.5 | 21        |
| 65 | Phenotypic Heterogeneity in a SOD1 G93D Italian ALS Family: An Example of Human Model to Study a<br>Complex Disease. Journal of Molecular Neuroscience, 2011, 44, 25-30.                                        | 1.1 | 20        |
| 66 | Behavioural But Not Cognitive Impairment Is a Determinant of Caregiver Burden in Amyotrophic<br>Lateral Sclerosis. European Neurology, 2016, 75, 191-194.                                                       | 0.6 | 20        |
| 67 | Serum irisin is upregulated in patients affected by amyotrophic lateral sclerosis and correlates with functional and metabolic status. Journal of Neurology, 2018, 265, 3001-3008.                              | 1.8 | 20        |
| 68 | Free insulinâ€like growth factor (IGF)â€1 and IGFâ€binding proteinsâ€2 and â€3 in serum and cerebrospinal fluid<br>of amyotrophic lateral sclerosis patients. European Journal of Neurology, 2010, 17, 398-404. | 1.7 | 19        |
| 69 | ATXN2 is a modifier of phenotype in ALS patients of Sardinian ancestry. Neurobiology of Aging, 2015, 36, 2906.e1-2906.e5.                                                                                       | 1.5 | 19        |
| 70 | Comorbidity of dementia with amyotrophic lateral sclerosis (ALS): insights from a large multicenter<br>Italian cohort. Journal of Neurology, 2017, 264, 2224-2231.                                              | 1.8 | 19        |
| 71 | The prognostic value of spirometric tests in Amyotrophic Lateral Sclerosis patients. Clinical Neurology and Neurosurgery, 2019, 184, 105456.                                                                    | 0.6 | 19        |
| 72 | Diagnostic and prognostic values of PBMC proteins in amyotrophic lateral sclerosis. Neurobiology of Disease, 2020, 139, 104815.                                                                                 | 2.1 | 19        |

| #  | Article                                                                                                                                                                      | IF  | CITATIONS |
|----|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 73 | Decoding distinctive features of plasma extracellular vesicles in amyotrophic lateral sclerosis.<br>Molecular Neurodegeneration, 2021, 16, 52.                               | 4.4 | 19        |
| 74 | Microstructural Correlates of Emotional Attribution Impairment in Non-Demented Patients with Amyotrophic Lateral Sclerosis. PLoS ONE, 2016, 11, e0161034.                    | 1.1 | 19        |
| 75 | Lack of association of PON polymorphisms with sporadic ALS in an Italian population. Neurobiology of Aging, 2011, 32, 552.e7-552.e13.                                        | 1.5 | 18        |
| 76 | MEF2D and MEF2C pathways disruption in sporadic and familial ALS patients. Molecular and Cellular Neurosciences, 2016, 74, 10-17.                                            | 1.0 | 18        |
| 77 | Collagen XIX Alpha 1 Improves Prognosis in Amyotrophic Lateral Sclerosis. , 2019, 10, 278.                                                                                   |     | 18        |
| 78 | Intrathecal nusinersen treatment for SMA in a dedicated neuromuscular clinic: an example of multidisciplinary and integrated care. Neurological Sciences, 2019, 40, 327-332. | 0.9 | 18        |
| 79 | ALS Cognitive Behavioral Screen (ALS-CBS): normative values for the Italian population and clinical usability. Neurological Sciences, 2020, 41, 835-841.                     | 0.9 | 18        |
| 80 | Primitive reflexes in amyotrophic lateral sclerosis: prevalence and correlates. Journal of Neurology, 2014, 261, 1196-1202.                                                  | 1.8 | 17        |
| 81 | Meditation Training for People with Amyotrophic Lateral Sclerosis and Their Caregivers. Journal of<br>Alternative and Complementary Medicine, 2014, 20, 272-275.             | 2.1 | 16        |
| 82 | Taste changes in amyotrophic lateral sclerosis and effects on quality of life. Neurological Sciences, 2019, 40, 399-404.                                                     | 0.9 | 16        |
| 83 | Tear-Based Vibrational Spectroscopy Applied to Amyotrophic Lateral Sclerosis. Analytical Chemistry, 2021, 93, 16995-17002.                                                   | 3.2 | 16        |
| 84 | Respiratory function of people with amyotrophic lateral sclerosis and caregiver distress level: a correlational study. BioPsychoSocial Medicine, 2012, 6, 14.                | 0.9 | 15        |
| 85 | Multimodal MRI quantification of the common neurostructural bases within the FTD-ALS continuum.<br>Neurobiology of Aging, 2018, 62, 95-104.                                  | 1.5 | 15        |
| 86 | Sport activity in Charcot–Marie–Tooth disease: A case study of a Paralympic swimmer. Neuromuscular<br>Disorders, 2016, 26, 614-618.                                          | 0.3 | 14        |
| 87 | Protein misfolding, amyotrophic lateral sclerosis and guanabenz: protocol for a phase II RCT with futility design (ProMISe trial). BMJ Open, 2017, 7, e015434.               | 0.8 | 14        |
| 88 | Anxiety and Depression in Patients with Amyotrophic Lateral Sclerosis and Their Caregivers. Current<br>Psychology, 2012, 31, 79-87.                                          | 1.7 | 13        |
| 89 | Grey matter damage in progressive multiple sclerosis versus amyotrophic lateral sclerosis: a voxel-based morphometry MRI study. Neurological Sciences, 2015, 36, 371-377.    | 0.9 | 13        |
| 90 | lrisin and BDNF serum levels and behavioral disturbances in Alzheimer's disease. Neurological<br>Sciences, 2019, 40, 1145-1150.                                              | 0.9 | 13        |

| #   | Article                                                                                                                                                                                                                                        | IF  | CITATIONS |
|-----|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 91  | Which are the factors influencing NIV adaptation and tolerance in ALS patients?. Neurological Sciences, 2021, 42, 1023-1029.                                                                                                                   | 0.9 | 13        |
| 92  | Aggressiveness, sexuality, and obsessiveness in late stages of ALS patients and their effects on caregivers. Amyotrophic Lateral Sclerosis and Other Motor Neuron Disorders, 2012, 13, 452-458.                                                | 2.3 | 12        |
| 93  | Brain MRI shows white matter sparing in Kennedy's disease and slowâ€progressing lower motor neuron disease. Human Brain Mapping, 2019, 40, 3102-3112.                                                                                          | 1.9 | 12        |
| 94  | Clinical psychology and amyotrophic lateral sclerosis. Frontiers in Psychology, 2010, 1, 33.                                                                                                                                                   | 1.1 | 11        |
| 95  | Burden of Rare Variants in ALS and Axonal Hereditary Neuropathy Genes Influence Survival in ALS:<br>Insights from a Next Generation Sequencing Study of an Italian ALS Cohort. International Journal of<br>Molecular Sciences, 2020, 21, 3346. | 1.8 | 11        |
| 96  | The hypometabolic state: a good predictor of a better prognosis in amyotrophic lateral sclerosis.<br>Journal of Neurology, Neurosurgery and Psychiatry, 2022, 93, 41-47.                                                                       | 0.9 | 11        |
| 97  | Association of Clinically Evident Eye Movement Abnormalities With Motor and Cognitive Features in Patients With Motor Neuron Disorders. Neurology, 2021, 97, e1835-e1846.                                                                      | 1.5 | 11        |
| 98  | Amyotrophic lateral sclerosis in pregnancy is associated with a vascular endothelial growth factor promoter genotype. European Journal of Neurology, 2014, 21, 594-598.                                                                        | 1.7 | 10        |
| 99  | Osteopathic Manual Treatment for Amyotrophic Lateral Sclerosis: A Feasibility Pilot Study. The Open<br>Neurology Journal, 2016, 10, 59-66.                                                                                                     | 0.4 | 10        |
| 100 | Emerging Drugs for the Treatment of Amyotrophic Lateral Sclerosis: A Focus on Recent Phase 2 Trials.<br>Expert Opinion on Emerging Drugs, 2020, 25, 145-164.                                                                                   | 1.0 | 10        |
| 101 | Urinary neopterin, a new marker of the neuroinflammatory status in amyotrophic lateral sclerosis.<br>Journal of Neurology, 2020, 267, 3609-3616.                                                                                               | 1.8 | 10        |
| 102 | Non-self-sufficiency as a primary outcome measure in ALS trials. Amyotrophic Lateral Sclerosis and Frontotemporal Degeneration, 2016, 17, 77-84.                                                                                               | 1.1 | 9         |
| 103 | Screening for early symptoms of respiratory involvement in myotonic dystrophy type 1 using the Respicheck questionnaire. Neuromuscular Disorders, 2020, 30, 301-309.                                                                           | 0.3 | 9         |
| 104 | Plasma amino acids patterns and age of onset of amyotrophic lateral sclerosis. Amyotrophic Lateral<br>Sclerosis and Frontotemporal Degeneration, 2014, 15, 371-375.                                                                            | 1.1 | 8         |
| 105 | HFE p.H63D polymorphism does not influence ALS phenotype and survival. Neurobiology of Aging, 2015, 36, 2906.e7-2906.e11.                                                                                                                      | 1.5 | 8         |
| 106 | Serum Proteome in a Sporadic Amyotrophic Lateral Sclerosis Geographical Cluster. Proteomics -<br>Clinical Applications, 2017, 11, 1700043.                                                                                                     | 0.8 | 8         |
| 107 | Replication of association of CHRNA4 rare variants with sporadic amyotrophic lateral sclerosis: The<br>Italian multicentre study. Amyotrophic Lateral Sclerosis and Other Motor Neuron Disorders, 2012, 13,<br>580-584.                        | 2.3 | 7         |
| 108 | G-CSF (filgrastim) treatment for amyotrophic lateral sclerosis: protocol for a phase II randomised,<br>double-blind, placebo-controlled, parallel group, multicentre clinical study (STEMALS-II trial). BMJ<br>Open, 2020, 10, e034049.        | 0.8 | 7         |

| #   | Article                                                                                                                                                                                                                                                              | IF  | CITATIONS |
|-----|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 109 | The heterozygous deletion c.1509_1510delAG in exon 14 of FUS causes an aggressive childhood-onset ALS with cognitive impairment. Neurobiology of Aging, 2021, 103, 130.e1-130.e7.                                                                                    | 1.5 | 7         |
| 110 | ATNX2 is not a regulatory gene in Italian amyotrophic lateral sclerosis patients with C9ORF72 GGGGCC expansion. Neurobiology of Aging, 2016, 39, 218.e5-218.e8.                                                                                                      | 1.5 | 6         |
| 111 | The development of an augmented reality device for the autonomous management of the electric bed and the electric wheelchair for patients with amyotrophic lateral sclerosis: a pilot study. Disability and Rehabilitation: Assistive Technology, 2021, 16, 513-519. | 1.3 | 6         |
|     |                                                                                                                                                                                                                                                                      |     |           |

Ocular Involvement Occurs Frequently at All Stages of Amyotrophic Lateral Sclerosis: Preliminary