Jiang Yuan

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4687990/publications.pdf Version: 2024-02-01

Ιμανίς Υμαν

#	Article	IF	CITATIONS
1	Nitric oxide-releasing polyurethane/ <i>S</i> -nitrosated keratin mats for accelerating wound healing. International Journal of Energy Production and Management, 2022, 9, rbac006.	1.9	15
2	Preparation of MSNs@Keratin as pH/GSH dual responsive drug delivery system. Journal of Biomaterials Science, Polymer Edition, 2022, 33, 1369-1382.	1.9	2
3	Hydrogen sulfide releasing hydrogel for alleviating cardiac inflammation and protecting against myocardial ischemia-reperfusion injury. Journal of Materials Chemistry B, 2022, 10, 5344-5351.	2.9	10
4	Keratin-tannic acid complex nanoparticles as pH/CSH dual responsive drug carriers for doxorubicin. Journal of Biomaterials Science, Polymer Edition, 2021, 32, 1125-1139.	1.9	10
5	Polydopamine/keratin complexes as gatekeepers of mesoporous silica nanoparticles for pH and GSH dual responsive drug delivery. Materials Letters, 2021, 293, 129676.	1.3	18
6	Biocompatible and photocrosslinkable poly(ethylene glycol)/keratin biocomposite hydrogels. Journal of Biomaterials Science, Polymer Edition, 2021, 32, 1998-2008.	1.9	7
7	Stepwise immobilization of keratin-dopamine conjugates and gold nanoparticles on PET sheets for potential vascular graft with the catalytic generation of nitric oxide. Colloids and Surfaces B: Biointerfaces, 2021, 205, 111855.	2.5	15
8	Nitric oxide-releasing poly(ε-caprolactone)/S-nitrosylated keratin biocomposite scaffolds for potential small-diameter vascular grafts. International Journal of Biological Macromolecules, 2021, 189, 516-527.	3.6	24
9	Antioxidant and multi-sensitive PNIPAAm/keratin double network gels for self-stripping wound dressing application. Journal of Materials Chemistry B, 2021, 9, 6212-6225.	2.9	24
10	A Nano-Silver Loaded PVA/Keratin Hydrogel With Strong Mechanical Properties Provides Excellent Antibacterial Effect for Delayed Sternal Closure. Frontiers in Bioengineering and Biotechnology, 2021, 9, 733980.	2.0	5
11	Poly(ε aprolactone)/keratin/heparin/VEGF biocomposite mats for vascular tissue engineering. Journal of Biomedical Materials Research - Part A, 2020, 108, 292-300.	2.1	27
12	PCL/sulfonated keratin mats for vascular tissue engineering scaffold with potential of catalytic nitric oxide generation. Materials Science and Engineering C, 2020, 107, 110246.	3.8	30
13	Keratin-dopamine conjugate nanoparticles as pH/GSH dual responsive drug carriers. Journal of Biomaterials Science, Polymer Edition, 2020, 31, 2318-2330.	1.9	8
14	Fabrication of PCL/keratin composite scaffolds for vascular tissue engineering with catalytic generation of nitric oxide potential. Journal of Materials Chemistry B, 2020, 8, 6092-6099.	2.9	19
15	S-nitrosated keratin composite mats with NO release capacity for wound healing. Chemical Engineering Journal, 2020, 400, 125964.	6.6	55
16	Keratin–Poly(2-methacryloxyethyl phosphatidylcholine) Conjugate-Based Micelles as a Tumor Micro-Environment-Responsive Drug-Delivery System with Long Blood Circulation. Langmuir, 2020, 36, 3540-3549.	1.6	12
17	Preparation and characterization of Keratin-PEG conjugate-based micelles as a tumor microenvironment-responsive drug delivery system. Journal of Biomaterials Science, Polymer Edition, 2020, 31, 1163-1178.	1.9	14
18	Self-crosslinked keratin nanoparticles for pH and GSH dual responsive drug carriers. Journal of Biomaterials Science, Polymer Edition, 2020, 31, 1994-2006.	1.9	16

JIANG YUAN

#	Article	lF	CITATIONS
19	Catalytic Generation of Nitric Oxide from Poly(ε-caprolactone)/Phosphobetainized Keratin Mats for a Vascular Tissue Engineering Scaffold. Langmuir, 2020, 36, 4396-4404.	1.6	18
20	Mussel-Inspired Surface Functionalization of PET with Zwitterions and Silver Nanoparticles for the Dual-Enhanced Antifouling and Antibacterial Properties. Langmuir, 2019, 35, 1788-1797.	1.6	27
21	DOX-Conjugated keratin nanoparticles for pH-Sensitive drug delivery. Colloids and Surfaces B: Biointerfaces, 2019, 181, 1012-1018.	2.5	38
22	Polyurethane/Keratin/AgNPs nanofibrous mats as catalyst support for 4-nitroaniline reduction. Materials Letters, 2019, 237, 9-13.	1.3	12
23	Sulfobetainized biocomposite mats with improved biocompatibility and antifouling property. Materials Letters, 2018, 218, 186-189.	1.3	4
24	Electrospun PCL/keratin/AuNPs mats with the catalytic generation of nitric oxide for potential of vascular tissue engineering. Journal of Biomedical Materials Research - Part A, 2018, 106, 3239-3247.	2.1	21
25	One-step fabricated keratin nanoparticles as pH and redox-responsive drug nanocarriers. Journal of Biomaterials Science, Polymer Edition, 2018, 29, 1920-1934.	1.9	17
26	Triple stimuli-responsive keratin nanoparticles as carriers for drug and potential nitric oxide release. Materials Science and Engineering C, 2018, 91, 606-614.	3.8	49
27	Heparinized PCL/keratin mats for vascular tissue engineering scaffold with potential of catalytic nitric oxide generation. Journal of Biomaterials Science, Polymer Edition, 2018, 29, 1785-1798.	1.9	10
28	Preparation and characterization of DOX loaded keratin nanoparticles for pH/GSH dual responsive release. Materials Science and Engineering C, 2017, 73, 189-197.	3.8	93
29	Extraction, characterization, and NO release potential of keratin from human hair. Materials Letters, 2016, 175, 188-190.	1.3	49
30	Design of hemocompatible and antifouling PET sheets with synergistic zwitterionic surfaces. Journal of Colloid and Interface Science, 2016, 480, 205-217.	5.0	20
31	Zwitterionic polymer brushes via dopamine-initiated ATRP from PET sheets for improving hemocompatible and antifouling properties. Colloids and Surfaces B: Biointerfaces, 2016, 145, 275-284.	2.5	51
32	Fabrication of poly(ε-caprolactone)/keratin nanofibrous mats as a potential scaffold for vascular tissue engineering. Materials Science and Engineering C, 2016, 68, 177-183.	3.8	46
33	Electrospun polyurethane/keratin/AgNP biocomposite mats for biocompatible and antibacterial wound dressings. Journal of Materials Chemistry B, 2016, 4, 635-648.	2.9	129
34	Differences in cytocompatibility between collagen, gelatin and keratin. Materials Science and Engineering C, 2016, 59, 30-34.	3.8	62
35	Preparation of keratin/chlorhexidine complex nanoparticles for long-term and dual stimuli-responsive release. RSC Advances, 2015, 5, 82334-82341.	1.7	34
36	Novel wound dressing based on nanofibrous PHBV-keratin mats. Journal of Tissue Engineering and Regenerative Medicine, 2015, 9, 1027-1035.	1.3	60

JIANG YUAN

#	Article	IF	CITATIONS
37	Hemocompatibility improvement of poly(ethylene terephthalate) via self-polymerization of dopamine and covalent graft of zwitterions. Materials Science and Engineering C, 2014, 36, 42-48.	3.8	37
38	Hemocompatibility and anti-biofouling property improvement of poly(ethylene terephthalate) via self-polymerization of dopamine and covalent graft of lysine. Journal of Biomaterials Science, Polymer Edition, 2014, 25, 1619-1628.	1.9	16
39	Synthesis and one-pot tethering of hydroxyl-capped phosphorylcholine onto cellulose membrane for improving hemocompatibility and antibiofouling property. Colloids and Surfaces B: Biointerfaces, 2013, 111, 432-438.	2.5	8
40	Biocompatibility of novel carboxylated graphene oxide–glutamic acid complexes. Journal of Materials Science, 2013, 48, 7097-7103.	1.7	8
41	Surface-initiated RAFT polymerization of sulfobetaine from cellulose membranes to improve hemocompatibility and antibiofouling property. Polymer Chemistry, 2013, 4, 5074.	1.9	75
42	Grafting of carboxybetaine brush onto cellulose membranes via surface-initiated ARGET-ATRP for improving blood compatibility. Colloids and Surfaces B: Biointerfaces, 2013, 103, 52-58.	2.5	102
43	Hemocompatibility and anti-biofouling property improvement of poly(ethylene terephthalate) via self-polymerization of dopamine and covalent graft of zwitterionic cysteine. Colloids and Surfaces B: Biointerfaces, 2013, 110, 327-332.	2.5	58
44	Long-term and controlled release of chlorhexidine–copper(II) from organically modified montmorillonite (OMMT) nanocomposites. Materials Science and Engineering C, 2013, 33, 752-757.	3.8	28
45	Antibacterial and anticoagulation properties of polyethylene/geneOâ€MPC nanocomposites. Journal of Applied Polymer Science, 2013, 129, 884-891.	1.3	11
46	Antibacterial and anticoagulation properties of carboxylated graphene oxide–lanthanum complexes. Journal of Materials Chemistry, 2012, 22, 1673-1678.	6.7	55
47	Reactive electrospinning of poly(vinyl alcohol) nanofibers. Journal of Applied Polymer Science, 2012, 124, 1067-1073.	1.3	13
48	Chemically induced graft copolymerization of 2-hydroxyethyl methacrylate onto polyurethane surface for improving blood compatibility. Applied Surface Science, 2011, 258, 755-760.	3.1	78
49	Rheology and processability of polyamide66 filled with differentâ€sized and sizeâ€distributed calcium carbonate. Polymer Composites, 2011, 32, 1633-1639.	2.3	4
50	Electrospinning of antibacterial poly(vinylidene fluoride) nanofibers containing silver nanoparticles. Journal of Applied Polymer Science, 2010, 116, 668-672.	1.3	25
51	Fabrication of PHBV/keratin composite nanofibrous mats for biomedical applications. Macromolecular Research, 2009, 17, 850-855.	1.0	73
52	Fabrication of proteinâ€doped PLA composite nanofibrous scaffolds for tissue engineering. Polymer International, 2008, 57, 1188-1193.	1.6	60
53	Enhanced blood compatibility of polyurethane functionalized with sulfobetaine. Colloids and Surfaces B: Biointerfaces, 2008, 66, 90-95.	2.5	72
54	Platelet adhesion and protein adsorption on silicone rubber surface by ozone-induced grafted polymerization with carboxybetaine monomer. Colloids and Surfaces B: Biointerfaces, 2005, 41, 55-62.	2.5	60

JIANG YUAN

#	ARTICLE	IF	CITATIONS
55	Chemical graft polymerization of sulfobetaine monomer on polyurethane surface for reduction in platelet adhesion. Colloids and Surfaces B: Biointerfaces, 2004, 39, 87-94.	2.5	78
56	Platelet adhesive resistance of segmented polyurethane film surface-grafted with vinyl benzyl sulfo monomer of ammonium zwitterions. Biomaterials, 2003, 24, 4223-4231.	5.7	83
57	Surface modification of SPEU films by ozone induced graft copolymerization to improve hemocompatibility. Colloids and Surfaces B: Biointerfaces, 2003, 29, 247-256.	2.5	42
58	Improvement of blood compatibility on cellulose membrane surface by grafting betaines. Colloids and Surfaces B: Biointerfaces, 2003, 30, 147-155.	2.5	79