Jihoon Ahn

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4687846/publications.pdf Version: 2024-02-01

Ιμοον Δην

#	Article	IF	CITATIONS
1	Elucidating the origin of chiroptical activity in chiral 2D perovskites through nano-confined growth. Nature Communications, 2022, 13, .	5.8	41
2	Chiral Perovskites for Nextâ€Generation Photonics: From Chirality Transfer to Chiroptical Activity. Advanced Materials, 2021, 33, e2005760.	11.1	107
3	Chiral Perovskites for Nextâ€Generation Photonics: From Chirality Transfer to Chiroptical Activity (Adv. Mater. 47/2021). Advanced Materials, 2021, 33, 2170369.	11.1	1
4	Chiral 2D Organic Inorganic Hybrid Perovskite with Circular Dichroism Tunable Over Wide Wavelength Range. Journal of the American Chemical Society, 2020, 142, 4206-4212.	6.6	151
5	Investigating Recombination and Charge Carrier Dynamics in a One-Dimensional Nanopillared Perovskite Absorber. ACS Nano, 2018, 12, 4233-4245.	7.3	44
6	Facile Sol–Gel-Derived Craterlike Dual-Functioning TiO ₂ Electron Transport Layer for High-Efficiency Perovskite Solar Cells. ACS Applied Materials & Interfaces, 2018, 10, 14649-14658.	4.0	18
7	Adjusting the Anisotropy of 1D Sb ₂ Se ₃ Nanostructures for Highly Efficient Photoelectrochemical Water Splitting. Advanced Energy Materials, 2018, 8, 1702888.	10.2	89
8	All‣olutionâ€Processed Silver Nanowire Window Electrodeâ€Based Flexible Perovskite Solar Cells Enabled with Amorphous Metal Oxide Protection. Advanced Energy Materials, 2018, 8, 1702182.	10.2	108
9	Highly porous carbon-coated silicon nanoparticles with canyon-like surfaces as a high-performance anode material for Li-ion batteries. Journal of Materials Chemistry A, 2018, 6, 3028-3037.	5.2	70
10	Porosity- and content-controlled metal/metal oxide/metal carbide@carbon (M/MO/MC@C) composites derived from MOFs: mechanism study and application for lithium-ion batteries. New Journal of Chemistry, 2018, 42, 18678-18689.	1.4	5
11	Thermally driven <i>in situ</i> exsolution of Ni nanoparticles from (Ni, Gd)CeO ₂ for high-performance solid oxide fuel cells. Journal of Materials Chemistry A, 2018, 6, 18133-18142.	5.2	32
12	Magnesiothermic Reductionâ€Enabled Synthesis of Siâ^'Ge Alloy Nanoparticles with a Canyonâ€Like Surface Structure for Liâ^'lon Battery. ChemElectroChem, 2018, 5, 2729-2733.	1.7	11
13	A pre-strain strategy for developing a highly stretchable and foldable one-dimensional conductive cord based on a Ag nanowire network. Nanoscale, 2017, 9, 5773-5778.	2.8	41
14	Metalâ€Nanowireâ€Electrodeâ€Based Perovskite Solar Cells: Challenging Issues and New Opportunities. Advanced Energy Materials, 2017, 7, 1602751.	10.2	62
15	A new class of chiral semiconductors: chiral-organic-molecule-incorporating organic–inorganic hybrid perovskites. Materials Horizons, 2017, 4, 851-856.	6.4	269
16	Sea Sand-Derived Magnesium Silicide as a Reactive Precursor for Silicon-Based Composite Electrodes of Lithium-Ion Battery. Electrochimica Acta, 2017, 245, 893-901.	2.6	13
17	Enhanced compatibility between a copper nanowire-based transparent electrode and a hybrid perovskite absorber by poly(ethylenimine). Nanoscale, 2017, 9, 17207-17211.	2.8	15
18	Perovskite Solar Cells: Metalâ€Nanowireâ€Electrodeâ€Based Perovskite Solar Cells: Challenging Issues and New Opportunities (Adv. Energy Mater. 15/2017). Advanced Energy Materials, 2017, 7, .	10.2	1

Јіноол Анл

#	Article	IF	CITATIONS
19	Variation in Crystalline Phases: Controlling the Selectivity between Silicon and Silicon Carbide via Magnesiothermic Reduction using Silica/Carbon Composites. Chemistry of Materials, 2016, 28, 1526-1536.	3.2	47
20	Activation of micropore-confined sulfur within hierarchical porous carbon for lithium-sulfur batteries. Journal of Power Sources, 2016, 306, 617-622.	4.0	36
21	Effect of PEDOT:PSS Coating on Manganese Oxide Nanowires for Lithium Ion Battery Anodes. Electrochimica Acta, 2016, 187, 340-347.	2.6	39
22	Elucidating Relationships between Structural Properties of Nanoporous Carbonaceous Shells and Electrochemical Performances of Si@Carbon Anodes for Lithium-Ion Batteries. Journal of Physical Chemistry C, 2015, 119, 10255-10265.	1.5	15
23	Soft Template Strategy to Synthesize Iron Oxide–Titania Yolk–Shell Nanoparticles as Highâ€Performance Anode Materials for Lithiumâ€Ion Battery Applications. Chemistry - A European Journal, 2015, 21, 7954-7961.	1.7	12
24	Titanium Silicide Coated Porous Silicon Nanospheres as Anode Materials for Lithium Ion Batteries. Electrochimica Acta, 2015, 151, 256-262.	2.6	46
25	Arsonic Acid As a Robust Anchor Group for the Surface Modification of Fe ₃ O ₄ . Langmuir, 2013, 29, 14912-14918.	1.6	8