Xiaojun Nie

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4687765/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Genome-Wide Identification and Characterization of RNA/DNA Differences Associated with Drought Response in Wheat. International Journal of Molecular Sciences, 2022, 23, 1405.	4.1	4
2	The Landscape of Autophagy-Related (ATG) Genes and Functional Characterization of TaVAMP727 to Autophagy in Wheat. International Journal of Molecular Sciences, 2022, 23, 891.	4.1	2
3	Integrate Small RNA and Degradome Sequencing to Reveal Drought Memory Response in Wheat (Triticum aestivum L.). International Journal of Molecular Sciences, 2022, 23, 5917.	4.1	11
4	A largeâ€scale genomic association analysis identifies the candidate causal genes conferring stripe rust resistance under multiple field environments. Plant Biotechnology Journal, 2021, 19, 177-191.	8.3	54
5	Genome-wide identification of PYL gene family in wheat: Evolution, expression and 3D structure analysis. Genomics, 2021, 113, 854-866.	2.9	37
6	Genome-wide identification and expression analysis of U-box gene family in wild emmer wheat (Triticum turgidum L. ssp. dicoccoides). Gene, 2021, 799, 145840.	2.2	6
7	Genome-Wide Investigation of Spliceosomal SM/LSM Genes in Wheat (Triticum aestivum L.) and Its Progenitors. Agronomy, 2021, 11, 1429.	3.0	0
8	Genome-wide identification and characterization of caffeoyl-coenzyme A O-methyltransferase genes related to the Fusarium head blight response in wheat. BMC Genomics, 2021, 22, 504.	2.8	12
9	Genome-Wide Identification, Evolution, and Expression Analysis of LBD Transcription Factor Family in Bread Wheat (Triticum aestivum L.). Frontiers in Plant Science, 2021, 12, 721253.	3.6	13
10	Genome-Wide Identification of Wheat ZIP Gene Family and Functional Characterization of the TaZIP13-B in Plants. Frontiers in Plant Science, 2021, 12, 748146.	3.6	6
11	The improved assembly of 7DL chromosome provides insight into the structure and evolution of bread wheat. Plant Biotechnology Journal, 2020, 18, 732-742.	8.3	6
12	Genomic and Phenotypic Divergence in Wild Barley Driven by Microgeographic Adaptation. Advanced Science, 2020, 7, 2000709.	11.2	8
13	Co-Regulation of Long Non-Coding RNAs with Allele-Specific Genes in Wheat Responding to Powdery Mildew Infection. Agronomy, 2020, 10, 896.	3.0	5
14	GENOME-WIDE IDENTIFICATION AND ANALYSIS OF THE CSLF GENE FAMILY IN BARLEY (HORDEUM VULGARE) TJ	ет <u>д</u> о о с) rgBT /Overlo
15	Genome-wide Identification, Evolution and Expression Analysis of Basic Helix-loop-helix (bHLH) Gene Family in Barley (Hordeum vulgare L.). Current Genomics, 2020, 21, 624-644.	1.6	14
16	Characteristics and Expression Pattern of MYC Genes in Triticum aestivum, Oryza sativa, and Brachypodium distachyon. Plants, 2019, 8, 274.	3.5	25

17Frequent intra- and inter-species introgression shapes the landscape of genetic variation in bread wheat. Genome Biology, 2019, 20, 136.8.81-	148
--	-----

¹⁸Genome-wide identification, expression profiles and regulatory network of MAPK cascade gene family
in barley. BMC Genomics, 2019, 20, 750.2.845

Xiaojun Nie

#	Article	IF	CITATIONS
19	Genomeâ€wide microsatellite characterisation and marker development in <i>Chenopodium quinoa</i> . Annals of Applied Biology, 2019, 175, 415-423.	2.5	7
20	N6â€nethyladenosine regulatory machinery in plants: composition, function and evolution. Plant Biotechnology Journal, 2019, 17, 1194-1208.	8.3	140
21	Hybrid sequencing reveals insight into heat sensing and signaling of bread wheat. Plant Journal, 2019, 98, 1015-1032.	5.7	73
22	Transcriptional Dynamics of Grain Development in Barley (Hordeum vulgare L.). International Journal of Molecular Sciences, 2019, 20, 962.	4.1	29
23	Evolution and Identification of the WRKY Gene Family in Quinoa (Chenopodium quinoa). Genes, 2019, 10, 131.	2.4	22
24	Melatonin: A Small Molecule but Important for Salt Stress Tolerance in Plants. International Journal of Molecular Sciences, 2019, 20, 709.	4.1	140
25	The TIFY Gene Family in Wheat and its Progenitors: Genome-wide Identification, Evolution and Expression Analysis. Current Genomics, 2019, 20, 371-388.	1.6	7
26	Identification and characterisation of RNA editing sites in chloroplast transcripts of einkorn wheat (<i>Triticum monococcum</i>). Annals of Applied Biology, 2018, 172, 197-207.	2.5	16
27	Comprehensive evaluating of wild and cultivated emmer wheat (Triticum turgidum L.) genotypes response to salt stress. Plant Growth Regulation, 2018, 84, 261-273.	3.4	17
28	Conservation analysis of long non-coding RNAs in plants. Science China Life Sciences, 2018, 61, 190-198.	4.9	83
29	Comparative Analysis of the Transcriptional Response of Tolerant and Sensitive Wheat Genotypes to Drought Stress in Field Conditions. Agronomy, 2018, 8, 247.	3.0	15
30	Direct comparison of \hat{l}^2 -glucan content in wild and cultivated barley. International Journal of Food Properties, 2018, 21, 2218-2228.	3.0	24
31	Complete Chloroplast Genome Sequence of Broomcorn Millet (Panicum miliaceum L.) and Comparative Analysis with Other Panicoideae Species. Agronomy, 2018, 8, 159.	3.0	14
32	Genome-Wide Identification and Expression Analysis of Heat Shock Transcription Factor Family in Chenopodium quinoa Willd. Agronomy, 2018, 8, 103.	3.0	13
33	Genome-Wide Identification and Expression Analysis of the HD-Zip Gene Family in Wheat (Triticum) Tj ETQq1 1	0.784314 2.4	rgBT/Overloc
34	Genome-wide sequence and expressional analysis of autophagy Gene family in bread wheat (Triticum) Tj ETQqO	0 0 ₃ .gBT /	Overlock 101

36	Shifting the limits in wheat research and breeding using a fully annotated reference genome. Science, 2018, 361, .	12.6	2,424
----	--	------	-------

The transcriptional landscape of polyploid wheat. Science, 2018, 361, .

#	Article	IF	CITATIONS
37	Identification and Analysis of RNA Editing Sites in the Chloroplast Transcripts of Aegilops tauschii L Genes, 2017, 8, 13.	2.4	34

38 Genome-Wide Identification and Analysis of MAPK and MAPKK Gene Families in Bread Wheat (Triticum) Tj ETQq0 0.0 rgBT /Oygrlock 10

39	Genome-Wide Identification and Characterization of Salinity Stress-Responsive miRNAs in Wild Emmer Wheat (Triticum turgidum ssp. dicoccoides). Genes, 2017, 8, 156.	2.4	36
40	Genome-wide identification, phylogeny and expressional profiles of mitogen activated protein kinase kinase kinase (MAPKKK) gene family in bread wheat (Triticum aestivum L.). BMC Genomics, 2016, 17, 668.	2.8	131
41	De novo Assembly and Characterization of the Transcriptome of Broomcorn Millet (Panicum) Tj ETQq1 1 0.7843	14 ₃ gBT /(Dverlock 10
42	Genome-Wide Identification, Evolution, and Co-expression Network Analysis of Mitogen-Activated Protein Kinase Kinase Kinases in Brachypodium distachyon. Frontiers in Plant Science, 2016, 7, 1400.	3.6	25
43	Genome-wide characterization of microsatellites in Triticeae species: abundance, distribution and evolution. Scientific Reports, 2016, 6, 32224.	3.3	30
44	Genome-wide identification, phylogeny and expression analysis of AP2/ERF transcription factors family in Brachypodium distachyon. BMC Genomics, 2016, 17, 636.	2.8	59
45	Selection and evaluation of reference genes for quantitative gene expression analysis in broomcorn millet (Panicum miliaceum L.). Journal of Plant Biology, 2016, 59, 435-443.	2.1	8
46	Transcriptome-wide identification and expression profiles of the WRKY transcription factor family in Broomcorn millet (Panicum miliaceum L.). BMC Genomics, 2016, 17, 343.	2.8	58
47	Characterization of microRNAs and their targets in wild barley (<i>Hordeum vulgare</i> subsp.) Tj ETQq1 1 0.78	4314 rgB1 2.0	- /Qverlock
48	Clobal Identification of MicroRNAs and Their Targets in Barley under Salinity Stress. PLoS ONE, 2015, 10, e0137990.	2.5	71
49	Comparative Analysis of Asteraceae Chloroplast Genomes: Structural Organization, RNA Editing and Evolution. Plant Molecular Biology Reporter, 2015, 33, 1526-1538.	1.8	65
50	Construction and Characterization of a Bacterial Artificial Chromosome Library for the Hexaploid Wheat Line 92R137. BioMed Research International, 2014, 2014, 1-9.	1.9	3
51	Comparative analysis of <i>Stowaway</i> â€like miniature inverted repeat transposable elements in wheat group 7 chromosomes: Abundance, composition, and evolution. Journal of Systematics and Evolution, 2014, 52, 743-749.	3.1	2
52	Comparative analysis of codon usage patterns in chloroplast genomes of the Asteraceae family. Plant Molecular Biology Reporter, 2014, 32, 828-840.	1.8	61
53	Computational Identification and Comparative Analysis of miRNAs in Wheat Group 7 Chromosomes. Plant Molecular Biology Reporter, 2014, 32, 487-500.	1.8	10
54	Largeâ€scale identification of microsatellites for a major invasive weed, <i><scp>A</scp>geratina adenophora</i> , using the <scp>I</scp> llumina sequencing technology. Weed Research, 2014, 54, 133-139.	1.7	3

Xiaojun Nie

#	Article	IF	CITATIONS
55	Preparation of High Molecular Weight gDNA and Bacterial Artificial Chromosome (BAC) Libraries in Plants. Methods in Molecular Biology, 2014, 1099, 41-63.	0.9	3
56	Dispersion and domestication shaped the genome of bread wheat. Plant Biotechnology Journal, 2013, 11, 564-571.	8.3	79
57	A 4-gigabase physical map unlocks the structure and evolution of the complex genome of <i>Aegilops tauschii,</i> the wheat D-genome progenitor. Proceedings of the National Academy of Sciences of the United States of America, 2013, 110, 7940-7945.	7.1	214
58	Identification and Characterization of MicroRNAs from Barley (Hordeum vulgare L.) by High-Throughput Sequencing. International Journal of Molecular Sciences, 2012, 13, 2973-2984.	4.1	80
59	Development of chromosomeâ€armâ€specific microsatellite markers in <i>Triticum aestivum</i> (Poaceae) using NGS technology. American Journal of Botany, 2012, 99, e369-71.	1.7	25
60	Analysis of codon usage patterns of the chloroplast genomes in the Poaceae family. Australian Journal of Botany, 2012, 60, 461.	0.6	36
61	Complete Chloroplast Genome Sequence of a Major Invasive Species, Crofton Weed (Ageratina) Tj ETQq1 1 0.784	4314 rgBT 2.5	/Overlock 1 234
62	Non-gridded library: a new approach for BAC (bacterial artificial chromosome) exploitation in hexaploid wheat (Triticum aestivum). Nucleic Acids Research, 2000, 28, 106e-106.	14.5	37
63	Patterns and impacting factors of gene evolutionary rate between wild and cultivated emmer wheat () Tj ETQq1 1	0.784314 3.1	1 rgBT /Over
64	Genetic Diversity of Transcription Factor Genes in Triticum and Mining for Promising Haplotypes for Beneficial Agronomic Traits. Frontiers in Plant Science, 0, 13, .	3.6	5