Xiaojun Nie

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4687765/publications.pdf

Version: 2024-02-01

201674 123424 5,638 64 27 61 h-index citations g-index papers 72 72 72 5867 all docs docs citations times ranked citing authors

#	Article	IF	Citations
1	Shifting the limits in wheat research and breeding using a fully annotated reference genome. Science, 2018, 361, .	12.6	2,424
2	The transcriptional landscape of polyploid wheat. Science, 2018, 361, .	12.6	768
3	Complete Chloroplast Genome Sequence of a Major Invasive Species, Crofton Weed (Ageratina) Tj ETQq1 1 0.784	1314 rgBT	Overlock 11
4	A 4-gigabase physical map unlocks the structure and evolution of the complex genome of $\langle i \rangle$ Aegilops tauschii, $\langle i \rangle$ the wheat D-genome progenitor. Proceedings of the National Academy of Sciences of the United States of America, 2013, 110, 7940-7945.	7.1	214
5	Frequent intra- and inter-species introgression shapes the landscape of genetic variation in bread wheat. Genome Biology, 2019, 20, 136.	8.8	148
6	N6â€methyladenosine regulatory machinery in plants: composition, function and evolution. Plant Biotechnology Journal, 2019, 17, 1194-1208.	8.3	140
7	Melatonin: A Small Molecule but Important for Salt Stress Tolerance in Plants. International Journal of Molecular Sciences, 2019, 20, 709.	4.1	140
8	Genome-wide identification, phylogeny and expressional profiles of mitogen activated protein kinase kinase (MAPKKK) gene family in bread wheat (Triticum aestivum L.). BMC Genomics, 2016, 17, 668.	2.8	131
9	Conservation analysis of long non-coding RNAs in plants. Science China Life Sciences, 2018, 61, 190-198.	4.9	83
10	Identification and Characterization of MicroRNAs from Barley (Hordeum vulgare L.) by High-Throughput Sequencing. International Journal of Molecular Sciences, 2012, 13, 2973-2984.	4.1	80
11	Dispersion and domestication shaped the genome of bread wheat. Plant Biotechnology Journal, 2013, 11, 564-571.	8.3	79
12	Hybrid sequencing reveals insight into heat sensing and signaling of bread wheat. Plant Journal, 2019, 98, 1015-1032.	5.7	73
13	Global Identification of MicroRNAs and Their Targets in Barley under Salinity Stress. PLoS ONE, 2015, 10, e0137990.	2.5	71
14	Comparative Analysis of Asteraceae Chloroplast Genomes: Structural Organization, RNA Editing and Evolution. Plant Molecular Biology Reporter, 2015, 33, 1526-1538.	1.8	65
15	Comparative analysis of codon usage patterns in chloroplast genomes of the Asteraceae family. Plant Molecular Biology Reporter, 2014, 32, 828-840.	1.8	61
16	Genome-wide identification, phylogeny and expression analysis of AP2/ERF transcription factors family in Brachypodium distachyon. BMC Genomics, 2016, 17, 636.	2.8	59
17	Transcriptome-wide identification and expression profiles of the WRKY transcription factor family in Broomcorn millet (Panicum miliaceum L.). BMC Genomics, 2016, 17, 343.	2.8	58
18	A largeâ€scale genomic association analysis identifies the candidate causal genes conferring stripe rust resistance under multiple field environments. Plant Biotechnology Journal, 2021, 19, 177-191.	8.3	54

#	Article	IF	CITATIONS
19	Genome-wide identification, expression profiles and regulatory network of MAPK cascade gene family in barley. BMC Genomics, 2019, 20, 750.	2.8	45
20	Genome-Wide Identification and Expression Analysis of the HD-Zip Gene Family in Wheat (Triticum) Tj ETQq0 0 0	rgBT /Ovei	·lgck 10 Tf 5
21	Non-gridded library: a new approach for BAC (bacterial artificial chromosome) exploitation in hexaploid wheat (Triticum aestivum). Nucleic Acids Research, 2000, 28, 106e-106.	14.5	37
22	Genome-wide identification of PYL gene family in wheat: Evolution, expression and 3D structure analysis. Genomics, 2021, 113, 854-866.	2.9	37
23	Analysis of codon usage patterns of the chloroplast genomes in the Poaceae family. Australian Journal of Botany, 2012, 60, 461.	0.6	36
24	Genome-Wide Identification and Characterization of Salinity Stress-Responsive miRNAs in Wild Emmer Wheat (Triticum turgidum ssp. dicoccoides). Genes, 2017, 8, 156.	2.4	36
25	Genome-Wide Identification and Analysis of MAPK and MAPKK Gene Families in Bread Wheat (Triticum) Tj ETQq1	1 0.78431 2.4	4 ₃ ggBT /Ove
26	Identification and Analysis of RNA Editing Sites in the Chloroplast Transcripts of Aegilops tauschii L Genes, 2017, 8, 13.	2.4	34
27	Genome-wide characterization of microsatellites in Triticeae species: abundance, distribution and evolution. Scientific Reports, 2016, 6, 32224.	3.3	30
28	De novo Assembly and Characterization of the Transcriptome of Broomcorn Millet (Panicum) Tj ETQq0 0 0 rgBT /0	Overlock 1	0 ₂₉ 50 382
29	Transcriptional Dynamics of Grain Development in Barley (Hordeum vulgare L.). International Journal of Molecular Sciences, 2019, 20, 962.	4.1	29
30	Genome-wide sequence and expressional analysis of autophagy Gene family in bread wheat (Triticum) Tj ETQq0 0	O ₃ rgBT /O	verlock 10 Tf
31	Development of chromosomeâ€armâ€specific microsatellite markers in <i>Triticum aestivum</i> (Poaceae) using NGS technology. American Journal of Botany, 2012, 99, e369-71.	1.7	25
32	Genome-Wide Identification, Evolution, and Co-expression Network Analysis of Mitogen-Activated Protein Kinase Kinase Kinases in Brachypodium distachyon. Frontiers in Plant Science, 2016, 7, 1400.	3.6	25
33	Characteristics and Expression Pattern of MYC Genes in Triticum aestivum, Oryza sativa, and Brachypodium distachyon. Plants, 2019, 8, 274.	3.5	25
34	Direct comparison of \hat{l}^2 -glucan content in wild and cultivated barley. International Journal of Food Properties, 2018, 21, 2218-2228.	3.0	24
35	Evolution and Identification of the WRKY Gene Family in Quinoa (Chenopodium quinoa). Genes, 2019, 10, 131.	2.4	22
36	Comprehensive evaluating of wild and cultivated emmer wheat (Triticum turgidum L.) genotypes response to salt stress. Plant Growth Regulation, 2018, 84, 261-273.	3.4	17

#	Article	IF	CITATIONS
37	Identification and characterisation of RNA editing sites in chloroplast transcripts of einkorn wheat (<i>Triticum monococcum</i>). Annals of Applied Biology, 2018, 172, 197-207.	2.5	16
38	Comparative Analysis of the Transcriptional Response of Tolerant and Sensitive Wheat Genotypes to Drought Stress in Field Conditions. Agronomy, 2018, 8, 247.	3.0	15
39	Complete Chloroplast Genome Sequence of Broomcorn Millet (Panicum miliaceum L.) and Comparative Analysis with Other Panicoideae Species. Agronomy, 2018, 8, 159.	3.0	14
40	Genome-wide Identification, Evolution and Expression Analysis of Basic Helix-loop-helix (bHLH) Gene Family in Barley (Hordeum vulgare L.). Current Genomics, 2020, 21, 624-644.	1.6	14
41	Genome-Wide Identification and Expression Analysis of Heat Shock Transcription Factor Family in Chenopodium quinoa Willd. Agronomy, 2018, 8, 103.	3.0	13
42	Genome-Wide Identification, Evolution, and Expression Analysis of LBD Transcription Factor Family in Bread Wheat (Triticum aestivum L.). Frontiers in Plant Science, 2021, 12, 721253.	3.6	13
43	Genome-wide identification and characterization of caffeoyl-coenzyme A O-methyltransferase genes related to the Fusarium head blight response in wheat. BMC Genomics, 2021, 22, 504.	2.8	12
44	Integrate Small RNA and Degradome Sequencing to Reveal Drought Memory Response in Wheat (Triticum aestivum L.). International Journal of Molecular Sciences, 2022, 23, 5917.	4.1	11
45	Computational Identification and Comparative Analysis of miRNAs in Wheat Group 7 Chromosomes. Plant Molecular Biology Reporter, 2014, 32, 487-500.	1.8	10
46	Selection and evaluation of reference genes for quantitative gene expression analysis in broomcorn millet (Panicum miliaceum L.). Journal of Plant Biology, 2016, 59, 435-443.	2.1	8
47	Genomic and Phenotypic Divergence in Wild Barley Driven by Microgeographic Adaptation. Advanced Science, 2020, 7, 2000709.	11.2	8
48	Genomeâ€wide microsatellite characterisation and marker development in <i>Chenopodium quinoa</i> Annals of Applied Biology, 2019, 175, 415-423.	2.5	7
49	The TIFY Gene Family in Wheat and its Progenitors: Genome-wide Identification, Evolution and Expression Analysis. Current Genomics, 2019, 20, 371-388.	1.6	7
50	The improved assembly of 7DL chromosome provides insight into the structure and evolution of bread wheat. Plant Biotechnology Journal, 2020, 18, 732-742.	8.3	6
51	Genome-wide identification and expression analysis of U-box gene family in wild emmer wheat (Triticum turgidum L. ssp. dicoccoides). Gene, 2021, 799, 145840.	2.2	6
52	Genome-Wide Identification of Wheat ZIP Gene Family and Functional Characterization of the TaZIP13-B in Plants. Frontiers in Plant Science, 2021, 12, 748146.	3.6	6
53	Co-Regulation of Long Non-Coding RNAs with Allele-Specific Genes in Wheat Responding to Powdery Mildew Infection. Agronomy, 2020, 10, 896.	3.0	5
54	Genetic Diversity of Transcription Factor Genes in Triticum and Mining for Promising Haplotypes for Beneficial Agronomic Traits. Frontiers in Plant Science, 0, 13, .	3.6	5

#	Article	IF	Citations
55	Characterization of microRNAs and their targets in wild barley (<i>Hordeum vulgare</i> subsp.) Tj ETQq1 1 0.75	34314 rgB1 2.0	7/Qverlock 10
56	Genome-Wide Identification and Characterization of RNA/DNA Differences Associated with Drought Response in Wheat. International Journal of Molecular Sciences, 2022, 23, 1405.	4.1	4
57	Construction and Characterization of a Bacterial Artificial Chromosome Library for the Hexaploid Wheat Line 92R137. BioMed Research International, 2014, 2014, 1-9.	1.9	3
58	Largeâ€scale identification of microsatellites for a major invasive weed, <i><scp>A</scp>geratina adenophora</i> , using the <scp>I</scp> llumina sequencing technology. Weed Research, 2014, 54, 133-139.	1.7	3
59	Preparation of High Molecular Weight gDNA and Bacterial Artificial Chromosome (BAC) Libraries in Plants. Methods in Molecular Biology, 2014, 1099, 41-63.	0.9	3
60	Comparative analysis of <i>Stowaway</i> â€like miniature inverted repeat transposable elements in wheat group 7 chromosomes: Abundance, composition, and evolution. Journal of Systematics and Evolution, 2014, 52, 743-749.	3.1	2
61	The Landscape of Autophagy-Related (ATG) Genes and Functional Characterization of TaVAMP727 to Autophagy in Wheat. International Journal of Molecular Sciences, 2022, 23, 891.	4.1	2
62	GENOME-WIDE IDENTIFICATION AND ANALYSIS OF THE CSLF GENE FAMILY IN BARLEY (HORDEUM VULGARE) 1	ј ЕТ <u>О</u> .9 ⁰ 0	0 rgBT /Overlo
63	Genome-Wide Investigation of Spliceosomal SM/LSM Genes in Wheat (Triticum aestivum L.) and Its Progenitors. Agronomy, 2021, 11, 1429.	3.0	O
64	Patterns and impacting factors of gene evolutionary rate between wild and cultivated emmer wheat () Tj ETQq(0 0 grgBT /	Overlock 10 T