
Antoine A F De Vries

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4687742/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Optical ventricular cardioversion by local optogenetic targeting and LED implantation in a cardiomyopathic rat model. Cardiovascular Research, 2022, 118, 2293-2303.	3.8	12
2	Conditional immortalization of human atrial myocytes for the generation of in vitro models of atrial fibrillation. Nature Biomedical Engineering, 2022, 6, 389-402.	22.5	16
3	Ultrasound-Guided Optogenetic Gene Delivery for Shock-Free Ventricular Rhythm Restoration. Circulation: Arrhythmia and Electrophysiology, 2022, 15, CIRCEP121009886.	4.8	1
4	Ejection of damaged mitochondria and their removal by macrophages ensure efficient thermogenesis in brown adipose tissue. Cell Metabolism, 2022, 34, 533-548.e12.	16.2	91
5	Conditional immortalization of human cardiomyocytes for translational <i>in vitro</i> modelling of cardiovascular disease. Cardiovascular Research, 2022, 118, e105-e107.	3.8	0
6	Sbk2, a Newly Discovered Atrium-Enriched Regulator of Sarcomere Integrity. Circulation Research, 2022, 131, 24-41.	4.5	5
7	A high-throughput drug screening strategy against coronaviruses. International Journal of Infectious Diseases, 2021, 103, 300-304.	3.3	14
8	Generation, Characterization, and Application of Inducible Proliferative Adult Human Epicardium-Derived Cells. Cells, 2021, 10, 2064.	4.1	3
9	The Effects of Repetitive Use and Pathological Remodeling on Channelrhodopsin Function in Cardiomyocytes. Frontiers in Physiology, 2021, 12, 710020.	2.8	4
10	Engineered 3D vessel-on-chip using hiPSC-derived endothelial- and vascular smooth muscle cells. Stem Cell Reports, 2021, 16, 2159-2168.	4.8	42
11	Fast Optical Investigation of Cardiac Electrophysiology by Parallel Detection in Multiwell Plates. Frontiers in Physiology, 2021, 12, 692496.	2.8	7
12	Realization of fully biological restoration of cardiac rhythm: a computational translational exploration. European Heart Journal, 2021, 42, .	2.2	0
13	Formation of human cardiomyocytes is impaired in a fibrotic environment: unravelling human cardiac regeneration. European Heart Journal, 2021, 42, .	2.2	1
14	Transcriptome analysis of conditionally immortalized atrial myocytes: identification of a novel atrium-enriched protein involved in sarcomere assembly and maintenance. European Heart Journal, 2021, 42, .	2.2	0
15	SARS-CoV-2/COVID-19: aÂprimer for cardiologists. Netherlands Heart Journal, 2020, 28, 366-383.	0.8	17
16	1275First evidence of "trapped reentry" as dormant source of acute atrial fibrillation and fractionated atrial electrograms under sinus rhythm. Europace, 2020, 22, .	1.7	0
17	Human-iPSC-Derived Cardiac Stromal Cells Enhance Maturation in 3D Cardiac Microtissues and Reveal Non-cardiomyocyte Contributions to Heart Disease. Cell Stem Cell, 2020, 26, 862-879.e11.	11.1	337
18	Renin-angiotensin system inhibition in COVID-19 patients. Netherlands Heart Journal, 2020, 28, 396-405.	0.8	15

ANTOINE A F DE VRIES

#	Article	IF	CITATIONS
19	Multicellular In vitro Models of Cardiac Arrhythmias: Focus on Atrial Fibrillation. Frontiers in Cardiovascular Medicine, 2020, 7, 43.	2.4	21
20	Identification of Functional Variant Enhancers Associated With Atrial Fibrillation. Circulation Research, 2020, 127, 229-243.	4.5	33
21	The proarrhythmic features of pathological cardiac hypertrophy in neonatal rat ventricular cardiomyocyte cultures. Journal of Applied Physiology, 2020, 128, 545-553.	2.5	3
22	Cardiomyocyte–myofibroblast contact dynamism is modulated by connexinâ€43. FASEB Journal, 2019, 33, 10453-10468.	0.5	28
23	Overexpression of MicroRNA-148b-3p stimulates osteogenesis of human bone marrow-derived mesenchymal stem cells: the role of MicroRNA-148b-3p in osteogenesis. BMC Medical Genetics, 2019, 20, 117.	2.1	17
24	Conditionally immortalized brown preadipocytes can switch between proliferative and differentiated states. Biochimica Et Biophysica Acta - Molecular and Cell Biology of Lipids, 2019, 1864, 158511.	2.4	8
25	T-Box20 inhibits osteogenic differentiation in adipose-derived human mesenchymal stem cells: the role of T-Box20 on osteogenesis. Journal of Biological Research, 2019, 26, 8.	2.1	4
26	DNA damage-induced PARP1 activation confers cardiomyocyte dysfunction through NAD+ depletion in experimental atrial fibrillation. Nature Communications, 2019, 10, 1307.	12.8	85
27	A novel isoform of myosin 18A (Myo18Aγ) is an essential sarcomeric protein in mouse heart. Journal of Biological Chemistry, 2019, 294, 7202-7218.	3.4	17
28	An automated hybrid bioelectronic system for autogenous restoration of sinus rhythm in atrial fibrillation. Science Translational Medicine, 2019, 11, .	12.4	50
29	2160Continuous shock-free termination of atrial fibrillation by local optogenetic therapy and arrhythmia-triggered activation of an implanted light source. European Heart Journal, 2019, 40, .	2.2	1
30	P5725Identification of novel cardiomyogenic factors by transcriptome analysis of conditionally immortalized atrial myocytes. European Heart Journal, 2019, 40, .	2.2	0
31	P1229Massive expansion of native human atrial cardiomyocytes through immortogenetics: generation of the hiAM cell lines. European Heart Journal, 2019, 40, .	2.2	3
32	Identification of atrial fibrillation associated genes and functional non-coding variants. Nature Communications, 2019, 10, 4755.	12.8	64
33	Response by Feola et al to Letter Regarding Article, "Localized Optogenetic Targeting of Rotors in Atrial Cardiomyocyte Monolayersâ€: Circulation: Arrhythmia and Electrophysiology, 2018, 11, e006130.	4.8	0
34	MicroRNA-499a-5p Promotes Differentiation of Human Bone Marrow-Derived Mesenchymal Stem Cells to Cardiomyocytes. Applied Biochemistry and Biotechnology, 2018, 186, 245-255.	2.9	26
35	196Local optogenetic therapy for acute shock-free termination of atrial fibrillation in vivo. European Heart Journal, 2018, 39, .	2.2	0
36	P924Massive expansion of native human atrial cardiomyocytes by immortogenetics. European Heart Journal, 2018, 39, .	2.2	0

ANTOINE A F DE VRIES

#	Article	IF	CITATIONS
37	P5717Biological shock-free termination of ventricular tachyarrhythmias in the adult rat model of cardiac pressure overload. European Heart Journal, 2018, 39, .	2.2	0
38	Biological defibrillation. European Heart Journal, 2018, 39, 3915-3917.	2.2	0
39	Paradoxical Onset of Arrhythmic Waves from Depolarized Areas in Cardiac Tissue Due to Curvature-Dependent Instability. Physical Review X, 2018, 8, 021077.	8.9	9
40	Generation and primary characterization of iAM-1, a versatile new line of conditionally immortalized atrial myocytes with preserved cardiomyogenic differentiation capacity. Cardiovascular Research, 2018, 114, 1848-1859.	3.8	22
41	Optogenetic termination of ventricular arrhythmias in the whole heart: towards biological cardiac rhythm management. European Heart Journal, 2017, 38, ehw574.	2.2	82
42	Localized Optogenetic Targeting of Rotors in Atrial Cardiomyocyte Monolayers. Circulation: Arrhythmia and Electrophysiology, 2017, 10, .	4.8	50
43	Allosteric Modulation of K _v 11.1 (hERG) Channels Protects Against Drug-Induced Ventricular Arrhythmias. Circulation: Arrhythmia and Electrophysiology, 2016, 9, e003439.	4.8	24
44	Optogenetic Engineering of Atrial Cardiomyocytes. Methods in Molecular Biology, 2016, 1408, 319-331.	0.9	12
45	Constitutively Active Acetylcholine-Dependent Potassium Current Increases Atrial Defibrillation Threshold by Favoring Post-Shock Re-Initiation. Scientific Reports, 2015, 5, 15187.	3.3	7
46	Forced fusion of human ventricular scar cells with cardiomyocytes suppresses arrhythmogenicity in a co-culture model. Cardiovascular Research, 2015, 107, 601-612.	3.8	3
47	Light-induced termination of spiral wave arrhythmias by optogenetic engineering of atrial cardiomyocytes. Cardiovascular Research, 2014, 104, 194-205.	3.8	108
48	Cardiac Anisotropy, Regeneration, and Rhythm. Circulation Research, 2014, 115, e6-7.	4.5	3
49	Development of a Lentivirus Vector-Based Assay for Non-Destructive Monitoring of Cell Fusion Activity. PLoS ONE, 2014, 9, e102433.	2.5	2
50	Gap Junctional Coupling with Cardiomyocytes is Necessary but Not Sufficient for Cardiomyogenic Differentiation of Cocultured Human Mesenchymal Stem Cells. Stem Cells, 2012, 30, 1236-1245.	3.2	28
51	The quest for an atrium-specific biomarker. Netherlands Heart Journal, 2011, 19, 151-152.	0.8	0
52	In vitro epithelial-to-mesenchymal transformation in human adult epicardial cells is regulated by TGFβ-signaling and WT1. Basic Research in Cardiology, 2011, 106, 829-847.	5.9	63
53	Antiproliferative treatment of myofibroblasts prevents arrhythmias in vitro by limiting myofibroblast-induced depolarization. Cardiovascular Research, 2011, 90, 295-304.	3.8	33
54	Epicardial Cells of Human Adults Can Undergo an Epithelial-to-Mesenchymal Transition and Obtain Characteristics of Smooth Muscle Cells In Vitro. Stem Cells, 2007, 25, 271-278.	3.2	160

#	Article	IF	CITATIONS
55	Human mesenchymal stem cells ectopically expressing full-length dystrophin can complement Duchenne muscular dystrophy myotubes by cell fusion. Human Molecular Genetics, 2006, 15, 213-221.	2.9	77