Gilberto Ã**Š** Braga

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4687623/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Antimicrobial photodynamic treatment (aPDT) as an innovative technology to control spoilage and pathogenic microorganisms in agri-food products: An updated review. Food Control, 2022, 132, 108527.	5.5	32
2	Phenothiazinium dyes for photodynamic treatment present lower environmental risk compared to a formulation of trifloxystrobin and tebuconazole. Journal of Photochemistry and Photobiology B: Biology, 2022, 226, 112365.	3.8	5
3	Photobiology of the keystone genus Metarhizium. Journal of Photochemistry and Photobiology B: Biology, 2022, 226, 112374.	3.8	13
4	Thiopyridinium phthalocyanine for improved photodynamic efficiency against pathogenic fungi. Journal of Photochemistry and Photobiology B: Biology, 2022, 231, 112459.	3.8	7
5	In vitro and in vivo photodynamic efficacies of novel and conventional phenothiazinium photosensitizers against multidrug-resistant Candida auris. Photochemical and Photobiological Sciences, 2022, 21, 1807-1818.	2.9	5
6	Photosensitizers attenuate LPS-induced inflammation: implications in dentistry and general health. Lasers in Medical Science, 2021, 36, 913-926.	2.1	7
7	Inactivation kinetics of Bacillus cereus vegetative cells and spores from different sources by antimicrobial photodynamic treatment (aPDT). LWT - Food Science and Technology, 2021, 142, 111037.	5.2	2
8	Glutathione reductase: A cytoplasmic antioxidant enzyme and a potential target for phenothiazinium dyes in Neospora caninum. International Journal of Biological Macromolecules, 2021, 187, 964-975.	7.5	6
9	Timing and duration of light exposure during conidia development determine tolerance to ultraviolet radiation. FEMS Microbiology Letters, 2021, 368, .	1.8	3
10	Outcome of blue, green, red, and white light on Metarhizium robertsii during mycelial growth on conidial stress tolerance and gene expression. Fungal Biology, 2020, 124, 263-272.	2.5	27
11	Photodynamic inactivation of Candida albicans and Candida tropicalis with aluminum phthalocyanine chloride nanoemulsion. Fungal Biology, 2020, 124, 297-303.	2.5	11
12	Metarhizium robertsii and M. acridum conidia produced on riboflavin-supplemented medium have increased UV-A tolerance and upregulated photoprotection and photoreactivation genes. BioControl, 2020, 65, 211-222.	2.0	14
13	Antimicrobial photodynamic treatment as an alternative approach for Alicyclobacillus acidoterrestris inactivation. International Journal of Food Microbiology, 2020, 333, 108803.	4.7	10
14	Inhibitory action of phenothiazinium dyes against Neospora caninum. Scientific Reports, 2020, 10, 7483.	3.3	12
15	Efficient photodynamic inactivation of Candida albicans by porphyrin and potassium iodide co-encapsulation in micelles. Photochemical and Photobiological Sciences, 2020, 19, 1063-1071.	2.9	18
16	Chemical features of the photosensitizers new methylene blue N and S137 influence their subcellular localization and photoinactivation efficiency in Candida albicans. Journal of Photochemistry and Photobiology B: Biology, 2020, 209, 111942.	3.8	6
17	Phenothiazinium Dyes Are Active against <i>Trypanosoma cruzi</i> In Vitro. BioMed Research International, 2019, 2019, 1-9.	1.9	7
18	Combining Transcriptomics and Proteomics Reveals Potential Post-transcriptional Control of Gene Expression After Light Exposure in <i>Metarhizium acridum</i> . G3: Genes, Genomes, Genetics, 2019, 9, 2951-2961.	1.8	15

#	Article	IF	CITATIONS
19	Antimicrobial photodynamic therapy with phenothiazinium photosensitizers in non-vertebrate model Galleria mellonella infected with Fusarium keratoplasticum and Fusarium moniliforme. Photodiagnosis and Photodynamic Therapy, 2019, 25, 197-203.	2.6	23
20	The Xenon Test Chamber Q-SUN® for testing realistic tolerances of fungi exposed to simulated full spectrum solar radiation. Fungal Biology, 2018, 122, 592-601.	2.5	33
21	Exposing Metarhizium acridum mycelium to visible light up-regulates a photolyase gene and increases photoreactivating ability. Journal of Invertebrate Pathology, 2018, 152, 35-37.	3.2	18
22	Metarhizium robertsii illuminated during mycelial growth produces conidia with increased germination speed and virulence. Fungal Biology, 2018, 122, 555-562.	2.5	30
23	Species of the Metarhizium anisopliae complex with diverse ecological niches display different susceptibilities to antifungal agents. Fungal Biology, 2018, 122, 563-569.	2.5	11
24	Responses of entomopathogenic fungi to the mutagen 4-nitroquinoline 1-oxide. Fungal Biology, 2018, 122, 621-628.	2.5	10
25	InÂvitro susceptibilities of Neoscytalidium spp. sequence types to antifungal agents and antimicrobial photodynamic treatment with phenothiazinium photosensitizers. Fungal Biology, 2018, 122, 436-448.	2.5	21
26	Promising filamentous native fungi isolated from paddy soils for arsenic mitigation in rice grains cultivated under flooded conditions. Journal of Environmental Chemical Engineering, 2018, 6, 3926-3932.	6.7	14
27	Survival variability of 12 strains of Bacillus cereus yielded to spray drying of whole milk. International Journal of Food Microbiology, 2018, 286, 80-89.	4.7	16
28	Biological and In silico Studies on Synthetic Analogues of Tyrosine Betaine as Inhibitors of Neprilysin - A Drug Target for the Treatment of Heart Failure. Current Pharmaceutical Design, 2018, 24, 1899-1904.	1.9	1
29	Photodynamic inactivation of conidia of the fungus Colletotrichum abscissum on Citrus sinensis plants with methylene blue under solar radiation. Journal of Photochemistry and Photobiology B: Biology, 2017, 176, 54-61.	3.8	34
30	Potential risks of the residue from Samarco's mine dam burst (Bento Rodrigues, Brazil). Environmental Pollution, 2016, 218, 813-825.	7.5	201
31	Photodynamic treatment with phenothiazinium photosensitizers kills both ungerminated and germinated microconidia of the pathogenic fungi Fusarium oxysporum, Fusarium moniliforme and Fusarium solani. Journal of Photochemistry and Photobiology B: Biology, 2016, 164, 1-12.	3.8	30
32	Inactivation of plant-pathogenic fungus Colletotrichum acutatum with natural plant-produced photosensitizers under solar radiation. Journal of Photochemistry and Photobiology B: Biology, 2016, 162, 402-411.	3.8	34
33	The effects of photodynamic treatment with new methylene blue N on the Candida albicans proteome. Photochemical and Photobiological Sciences, 2016, 15, 1503-1513.	2.9	27
34	A low-cost and environmentally-friendly potential procedure for inorganic-As remediation based on the use of fungi isolated from rice rhizosphere. Journal of Environmental Chemical Engineering, 2016, 4, 891-898.	6.7	13
35	Exposure ofMetarhizium acridummycelium to light induces tolerance to UV-B radiation. FEMS Microbiology Letters, 2016, 363, fnw036.	1.8	24
36	Tolerance of entomopathogenic fungi to ultraviolet radiation: a review on screening of strains and their formulation. Current Genetics, 2015, 61, 427-440.	1.7	123

#	Article	IF	CITATIONS
37	Growth under Visible Light Increases Conidia and Mucilage Production and Tolerance to <scp>UV</scp> â€B Radiation in the Plant Pathogenic Fungus <i><scp>C</scp>olletotrichum acutatum</i> . Photochemistry and Photobiology, 2015, 91, 397-402.	2.5	29
38	Fungal stress biology: a preface to the Fungal Stress Responses special edition. Current Genetics, 2015, 61, 231-238.	1.7	46
39	Genetic Effects of eNOS Polymorphisms on Biomarkers Related to Cardiovascular Status in a Population Coexposed to Methylmercury and Lead. Archives of Environmental Contamination and Toxicology, 2015, 69, 173-180.	4.1	10
40	Stress tolerance and virulence of insect-pathogenic fungi are determined by environmental conditions during conidial formation. Current Genetics, 2015, 61, 383-404.	1.7	133
41	Molecular and physiological effects of environmental UV radiation on fungal conidia. Current Genetics, 2015, 61, 405-425.	1.7	164
42	Effects of genetic polymorphisms on antioxidant status and concentrations of the metals in the blood of riverside Amazonian communities co-exposed to Hg and Pb. Environmental Research, 2015, 138, 224-232.	7.5	34
43	<i>In Vitro</i> Photodynamic Inactivation of Plant-Pathogenic Fungi Colletotrichum acutatum and Colletotrichum gloeosporioides with Novel Phenothiazinium Photosensitizers. Applied and Environmental Microbiology, 2014, 80, 1623-1632.	3.1	54
44	Genetic Polymorphisms in Glutathione (GSH-) Related Genes Affect the Plasmatic Hg/Whole Blood Hg Partitioning and the Distribution between Inorganic and Methylmercury Levels in Plasma Collected from a Fish-Eating Population. BioMed Research International, 2014, 2014, 1-8.	1.9	20
45	Responsiveness of entomopathogenic fungi to menadione-induced oxidative stress. Fungal Biology, 2014, 118, 990-995.	2.5	23
46	Furocoumarins and coumarins photoinactivate Colletotrichum acutatum and Aspergillus nidulans fungi under solar radiation. Journal of Photochemistry and Photobiology B: Biology, 2014, 131, 74-83.	3.8	48
47	In vitro photodynamic inactivation of Candida species and mouse fibroblasts with phenothiazinium photosensitisers and red light. Photodiagnosis and Photodynamic Therapy, 2013, 10, 141-149.	2.6	60
48	Polymorphisms in glutathione-related genes modify mercury concentrations and antioxidant status in subjects environmentally exposed to methylmercury. Science of the Total Environment, 2013, 463-464, 319-325.	8.0	59
49	Susceptibilities of the dermatophytes Trichophyton mentagrophytes and T. rubrum microconidia to photodynamic antimicrobial chemotherapy with novel phenothiazinium photosensitizers and red light. Journal of Photochemistry and Photobiology B: Biology, 2012, 116, 89-94.	3.8	52
50	Evaluation of Glutathione <i>S</i> -transferase <i>GSTM1</i> and <i>GSTT1</i> Polymorphisms and Methylmercury Metabolism in an Exposed Amazon Population. Journal of Toxicology and Environmental Health - Part A: Current Issues, 2012, 75, 960-970.	2.3	24
51	<i>In Vitro</i> Photodynamic Inactivation of <i>Cryptococcus neoformans</i> Melanized Cells with Chloroaluminum Phthalocyanine Nanoemulsion. Photochemistry and Photobiology, 2012, 88, 440-447.	2.5	34
52	Visible light during mycelial growth and conidiation of Metarhizium robertsii produces conidia with increased stress tolerance. FEMS Microbiology Letters, 2011, 315, 81-86.	1.8	67
53	Determination of the Effects of eNOS Gene Polymorphisms (T-786C and Glu298Asp) on Nitric Oxide Levels in a Methylmercury-Exposed Population. Journal of Toxicology and Environmental Health - Part A: Current Issues, 2011, 74, 1323-1333.	2.3	13
54	Photodynamic Inactivation of Conidia of the Fungi <i>Metarhizium anisopliae</i> and <i>Aspergillus nidulans</i> with Methylene Blue and Toluidine Blue. Photochemistry and Photobiology, 2010, 86, 653-661.	2.5	53

Gilberto Ú L Braga

#	Article	IF	CITATIONS
55	Fungal tyrosine betaine, a novel secondary metabolite from conidia of entomopathogenic Metarhizium spp. fungi. Fungal Biology, 2010, 114, 473-480.	2.5	35
56	A proteomic approach to identifying proteins differentially expressed in conidia and mycelium of the entomopathogenic fungus Metarhizium acridum. Fungal Biology, 2010, 114, 572-579.	2.5	41
57	Quantification of Cyclobutane Pyrimidine Dimers Induced by UVB Radiation in Conidia of the Fungi <i>Aspergillus fumigatus</i> , <i>Aspergillus nidulan</i> s, <i>Metarhizium acridum</i> and <i>Metarhizium robertsii</i> . Photochemistry and Photobiology, 2010, 86, 1259-1266.	2.5	43
58	Variability in UVB Tolerances of Melanized and Nonmelanized Cells of <i>Cryptococcus neoformans</i> and <i>C.Âlaurentii</i> . Photochemistry and Photobiology, 2009, 85, 205-213.	2.5	14
59	Mutants and isolates of Metarhizium anisopliae are diverse in their relationships between conidial pigmentation and stress tolerance. Journal of Invertebrate Pathology, 2006, 93, 170-182.	3.2	82
60	Conidial Pigmentation Is Important to Tolerance Against Solar-simulated Radiation in the Entomopathogenic Fungus Metarhizium anisopliae. Photochemistry and Photobiology, 2006, 82, 418.	2.5	62
61	Variability in conidial thermotolerance of Metarhizium anisopliae isolates from different geographic origins. Journal of Invertebrate Pathology, 2005, 88, 116-125.	3.2	159
62	Influence of growth environment on tolerance to UV-B radiation, germination speed, and morphology of Metarhizium anisopliae var. acridum conidia. Journal of Invertebrate Pathology, 2005, 90, 55-58.	3.2	54
63	Enzyme activities associated with oxidative stress in Metarhizium anisopliae during germination, mycelial growth, and conidiation and in response to near-UV irradiation. Canadian Journal of Microbiology, 2004, 50, 41-49.	1.7	47
64	Variations in UV-B tolerance and germination speed of Metarhizium anisopliae conidia produced on insects and artificial substrates. Journal of Invertebrate Pathology, 2004, 87, 77-83.	3.2	110
65	Damage and Recovery from UV-B Exposure in Conidia of the Entomopathogens Verticillium lecanii and Aphanocladium album. Mycologia, 2002, 94, 912.	1.9	36
66	Damage and recovery from UV-B exposure in conidia of the entomopathogens <i>Verticillium lecanii</i> and <i>Aphanocladium album</i> . Mycologia, 2002, 94, 912-920.	1.9	79
67	Damage and recovery from UV-B exposure in conidia of the entomopathogens Verticillium lecanii and Aphanocladium album. Mycologia, 2002, 94, 912-20.	1.9	13
68	Both Solar UVA and UVB Radiation Impair Conidial Culturability and Delay Germination in the Entomopathogenic Fungus Metarhizium anisopliae¶. Photochemistry and Photobiology, 2001, 74, 734.	2.5	118
69	Variability in Response to UV-B among Species and Strains of Metarhizium Isolated from Sites at Latitudes from 61°N to 54°S. Journal of Invertebrate Pathology, 2001, 78, 98-108.	3.2	143
70	The rpoS Gene in Pseudomonas syringae Is Important in Surviving Exposure to the Near-UV in Sunlight. Current Microbiology, 2001, 43, 374-377.	2.2	24
71	Effect of UV-B on conidia and germlings of the entomopathogenic hyphomycete Metarhizium anisopliae. Mycological Research, 2001, 105, 874-882.	2.5	77
72	Effects of UVB Irradiance on Conidia and Germinants of the Entomopathogenic Hyphomycete Metarhizium anisopliae: A Study of Reciprocity and Recovery¶. Photochemistry and Photobiology, 2001, 73, 140.	2.5	67

Gilberto Ú L Braga

#	Article	IF	CITATIONS
73	Effects of UVB Irradiance on Conidia and Germinants of the Entomopathogenic Hyphomycete Metarhizium anisopliae: A Study of Reciprocity and Recovery¶. Photochemistry and Photobiology, 2001, 73, 140-146.	2.5	6
74	Both Solar UVA and UVB Radiation Impair Conidial Culturability and Delay Germination in the Entomopathogenic Fungus Metarhizium anisopliae¶. Photochemistry and Photobiology, 2001, 74, 734-739.	2.5	12
75	Protease production during growth and autolysis of submerged Metarhizium anisopliae cultures. Revista De Microbiologia, 1999, 30, 107-113.	0.1	16
76	Oxygen Consumption by Metarhizium anisopliae during Germination and Growth on Different Carbon Sources. Journal of Invertebrate Pathology, 1999, 74, 112-119.	3.2	36
77	Estimates of genetic parameters related to chitinase production by the entomopathogenic fungus Metarhizium anisopliae. Genetics and Molecular Biology, 1998, 21, 171-177.	1.3	8
78	Estimates of Genetic Parameters Related to Protease Production by Metarhizium anisopliae. Journal of Invertebrate Pathology, 1994, 64, 6-12.	3.2	8