Uttam Surana

List of Publications by Year

 in descending orderSource: https:/|exaly.com/author-pdf/4686767/publications.pdf
Version: 2024-02-01

2 Potential Therapeutics Targeting Upstream Regulators and Interactors of EHMT1/2. Cancers, 2022, 14,
2855 .
Potential Therapeutics Targeting Upstream Regulators and Interactors of EHMT1/2. Cancers, 2022, 14,
2855 . CHILD syndrome in a Malaysian adult with identification of a novel heterozygous missense mutation
3 NSDHL c.602A>C. International Journal of Dermatology, 2021, 60, e154-e156.
$0.5 \quad 1$

Dun1, a Chk2-related kinase, is the central regulator of securin-separase dynamics during DNA damage
6.5

5 signaling. Nucleic Acids Research, 2020, 48, 6092-6107.
$5 \quad$ H syndrome â€" the first report in Malaysia. International Journal of Dermatology, 2019, 58, e190-e193.
$0.5 \quad 1$

6 Resistance to anti-microtubule drug-induced cell death is determined by regulation of BimEL expression. Oncogene, 2019, 38, 4352-4365.
$2.6 \quad 2$

7 Electron cryotomography analysis of Dam1C/DASH at the kinetochoreâ€"spindle interface in situ.
7 Journal of Cell Biology, 2019, 218, 455-473.
$2.3 \quad 27$

8 Blau syndrome associated with nucleotide-binding oligomerization domain containing 2 mutation in a
baby from Malaysia. Indian Journal of Dermatology, 2019, 64, 400.
$0.1 \quad 1$

9 Conformational landscape of the epidermal growth factor receptor kinase reveals a mutant specific allosteric pocket. Chemical Science, 2018, 9, 5212-5222.

10 Identification of novel homozygous <i><scp>SLURP<|scp>1<|i> mutation in a Javanese family with Mal de Meleda. International Journal of Dermatology, 2017, 56, 1161-1168.
Replication stress-induced endogenous DNA damage drives cellular senescence induced by a sub-lethal
oxidative stress. Nucleic Acids Research, 2017, 45, 10564-10582.
oxidative stress. Nucleic Acids Research, 2017, 45, 10564-10582.

Induced-Decay of Glycine Decarboxylase Transcripts as an Anticancer Therapeutic Strategy for
12 Non-Small-Cell Lung Carcinoma. Molecular Therapy - Nucleic Acids, 2017, 9, 263-273.
2.3

22

An improved pre-clinical patient-derived liquid xenograft mouse model for acute myeloid leukemia.
Journal of Hematology and Oncology, 2017, 10, 162.
$6.9 \quad 17$

Budding yeast chromatin is dispersed in a crowded nucleoplasm in vivo. Molecular Biology of the

```
Transcription Factor Oscillations Induce Differential Gene Expressions. Biophysical Journal, 2012, 102,
2413-2423.
```25 DNA Damage Checkpoint Maintains Cdh1 in an Active State to Inhibit Anaphase Progression.Developmental Cell, 2009, 17, 541-551.
```

27 Inactivation of Cdh1 by synergistic action of Cdk1 and polo kinase is necessary for proper assembly of the mitotic spindle. Nature Cell Biology, 2008, 10, 665-675.
29 A Novel Cell Cycle Inhibitor Stalls Replication Forks and Activates S Phase Checkpoint. Cell Cycle, 2007, 6, 1621-1630.
37 Tome-1, wee1, and the Onset of Mitosis. Molecular Cell, 2003, 11, 845-846. 20
Dependence of pre-mRNA introns on PRP17, a non-essential splicing factor: implications for efficient
progression through cell cycle transitions. Nucleic Acids Research, 2003, 31, 2333-2343.
Inactivation of Mitotic Kinase Triggers Translocation of MEN Components to Mother-Daughter Neck
in Yeast. Molecular Biology of the Cell, 2003, 14, 4734-4743.

40	MEN, destruction and separation: mechanistic links between mitotic exit and cytokinesis in budding yeast. BioEssays, 2002, 24, 659-666.	1.2	30
41	Early Expressed Clb Proteins Allow Accumulation of Mitotic Cyclin by Inactivating Proteolytic Machinery during S Phase. Molecular and Cellular Biology, 2001, 21, 5071-5081.	1.1	45
42	Cdc20 protein contains a destruction-box but, unlike Clb2, its proteolysisis not acutely dependent on the activity of anaphase-promoting complex. FEBS Journal, 2000, 267, 434-449.	0.2	22
43	Exit from Mitosis in Budding Yeast. Molecular Cell, 2000, 5, 501-511.	4.5	150

Cdc4, a Protein Required for the Onset of S Phase, Serves an Essential Function during

$44 \quad \mathrm{G}$ <sub>2<|sub>/M Transition in <i>Saccharomyces cerevisiae</i>. Molecular and Cellular Biology, 1999,

1.1

34
19, 5512-5522.

45	<i>NDD1<\|i>, a High-Dosage Suppressor of <i>cdc28-1N</i>, Is Essential for Expression of a Subset of Late-S-Phase-Specific Genes in <i>Saccharomyces cerevisiae</i>. Molecular and Cellular Biology, 1999, 19, 3312-3327.	1.1	88
46	Cdc 20 is essential for the cyclosome-mediated proteolysis of both Pds 1 and Clb 2 during M phase in budding yeast. Current Biology, 1998, 8, 231-237.	1.8	157
47	Arabidopsis profilins are functionally similar to yeast profilins: identification of a vascular bundle-specific profilin and a pollen-specific profilin. Plant Journal, 1996, 10, 269-279.	2.8	107
48	Molecular and genetic characterization of. Molecular Genetics and Genomics, 1996, 251, 38.	2.4	0
49	Regulation of p34CDC28 tyrosine phosphorylation is not required for entry into mitosis in S. cerevisiae. Nature, 1992, 355, 368-371.	13.7	308

The role of phosphorylation and the CDC28 protein kinase in cell cycle-regulated nuclear import of the S. cerevisiae transcription factor SW15. Cell, 1991, 66, 743-758.

