Uttam Surana

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4686767/publications.pdf

Version: 2024-02-01

279798 233421 2,952 45 51 23 citations h-index g-index papers 97 97 97 2590 citing authors docs citations times ranked all docs

#	Article	IF	CITATIONS
1	Cryo-ET detects bundled triple helices but not ladders in meiotic budding yeast. PLoS ONE, 2022, 17, e0266035.	2.5	2
2	Potential Therapeutics Targeting Upstream Regulators and Interactors of EHMT1/2. Cancers, 2022, 14, 2855.	3.7	1
3	CHILD syndrome in a Malaysian adult with identification of a novel heterozygous missense mutation NSDHL c.602A>G. International Journal of Dermatology, 2021, 60, e154-e156.	1.0	1
4	Dun1, a Chk2-related kinase, is the central regulator of securin-separase dynamics during DNA damage signaling. Nucleic Acids Research, 2020, 48, 6092-6107.	14.5	5
5	H syndrome – the first report in Malaysia. International Journal of Dermatology, 2019, 58, e190-e193.	1.0	1
6	Resistance to anti-microtubule drug-induced cell death is determined by regulation of BimEL expression. Oncogene, 2019, 38, 4352-4365.	5.9	2
7	Electron cryotomography analysis of Dam1C/DASH at the kinetochore–spindle interface in situ. Journal of Cell Biology, 2019, 218, 455-473.	5.2	27
8	Blau syndrome associated with nucleotide-binding oligomerization domain containing 2 mutation in a baby from Malaysia. Indian Journal of Dermatology, 2019, 64, 400.	0.3	1
9	Conformational landscape of the epidermal growth factor receptor kinase reveals a mutant specific allosteric pocket. Chemical Science, 2018, 9, 5212-5222.	7.4	31
10	Identification of novel homozygous <i><scp>SLURP</scp>1</i> mutation in a Javanese family with Mal de Meleda. International Journal of Dermatology, 2017, 56, 1161-1168.	1.0	6
11	Replication stress-induced endogenous DNA damage drives cellular senescence induced by a sub-lethal oxidative stress. Nucleic Acids Research, 2017, 45, 10564-10582.	14.5	67
12	Induced-Decay of Glycine Decarboxylase Transcripts as an Anticancer Therapeutic Strategy for Non-Small-Cell Lung Carcinoma. Molecular Therapy - Nucleic Acids, 2017, 9, 263-273.	5.1	22
13	An improved pre-clinical patient-derived liquid xenograft mouse model for acute myeloid leukemia. Journal of Hematology and Oncology, 2017, 10, 162.	17.0	17
14	Budding yeast chromatin is dispersed in a crowded nucleoplasm in vivo. Molecular Biology of the Cell, 2016, 27, 3357-3368.	2.1	70
15	Condensin recruitment to chromatin is inhibited by Chk2 kinase in response to DNA damage. Cell Cycle, 2016, 15, 3454-3470.	2.6	14
16	Cdk1 promotes kinetochore bi-orientation and regulates Cdc20 expression during recovery from spindle checkpoint arrest. EMBO Journal, 2012, 31, 403-416.	7.8	14
17	"Reductional anaphase―in replication-defective cells is caused by ubiquitin-conjugating enzyme Cdc34-mediated deregulation of the spindle. Cell Cycle, 2012, 11, 2896-2910.	2.6	O
18	Staging a recovery from mitotic arrest. Bioarchitecture, 2012, 2, 33-37.	1.5	1

#	Article	IF	CITATIONS
19	Transcription Factor Oscillations Induce Differential Gene Expressions. Biophysical Journal, 2012, 102, 2413-2423.	0.5	23
20	The "suppressive side" of yeast mitotic cyclins. Cell Cycle, 2011, 10, 3052-3052.	2.6	0
21	DNA stretching in the nucleosome facilitates alkylation by an intercalating antitumour agent. Nucleic Acids Research, 2010, 38, 2081-2088.	14.5	37
22	p38 Mitogen-Activated Protein Kinase Promotes Cell Survival in Response to DNA Damage but Is Not Required for the G ₂ DNA Damage Checkpoint in Human Cancer Cells. Molecular and Cellular Biology, 2010, 30, 3816-3826.	2.3	52
23	Oscillations of the p53-Akt Network: Implications on Cell Survival and Death. PLoS ONE, 2009, 4, e4407.	2.5	65
24	Regulation of centrosome separation in yeast and vertebrates: common threads. Trends in Cell Biology, 2009, 19, 325-333.	7.9	40
25	DNA Damage Checkpoint Maintains Cdh1 in an Active State to Inhibit Anaphase Progression. Developmental Cell, 2009, 17, 541-551.	7.0	41
26	Solubilization and preformulation of poorly water soluble and hydrolysis susceptible N-epoxymethyl-1,8-naphthalimide (ENA) compound. International Journal of Pharmaceutics, 2008, 356, 130-136.	5.2	13
27	Inactivation of Cdh1 by synergistic action of Cdk1 and polo kinase is necessary for proper assembly of the mitotic spindle. Nature Cell Biology, 2008, 10, 665-675.	10.3	65
28	Consorting kinases, end of destruction and birth of a spindle. Cell Cycle, 2008, 7, 2960-2966.	2.6	7
29	A Novel Cell Cycle Inhibitor Stalls Replication Forks and Activates S Phase Checkpoint. Cell Cycle, 2007, 6, 1621-1630.	2.6	9
30	Disjunction of conjoined twins: Cdk1, Cdh1 and separation of centrosomes., 2006, 1, 12.		8
31	Cdk1 regulates centrosome separation by restraining proteolysis of microtubule-associated proteins. EMBO Journal, 2006, 25, 2551-2563.	7.8	83
32	Deficiency of centromere-associated protein Slk19 causes premature nuclear migration and loss of centromeric elasticity. Journal of Cell Science, 2006, 119, 519-531.	2.0	12
33	Essential tension and constructive destruction: the spindle checkpoint and its regulatory links with mitotic exit. Biochemical Journal, 2005, 386, 1-13.	3.7	59
34	Cdc42-dependent localization of polarisome component Spa2 to the incipient bud site is independent of the GDP/GTP exchange factor Cdc24. European Journal of Cell Biology, 2005, 84, 939-949.	3.6	13
35	Taming the Spindle for Containing the Chromosomes. Cell Cycle, 2005, 4, 376-379.	2.6	8
36	DNA Replication Checkpoint Prevents Precocious Chromosome Segregation by Regulating Spindle Behavior. Molecular Cell, 2004, 16, 687-700.	9.7	66

#	Article	IF	Citations
37	Tome-1, wee1, and the Onset of Mitosis. Molecular Cell, 2003, 11, 845-846.	9.7	20
38	Dependence of pre-mRNA introns on PRP17, a non-essential splicing factor: implications for efficient progression through cell cycle transitions. Nucleic Acids Research, 2003, 31, 2333-2343.	14.5	20
39	Inactivation of Mitotic Kinase Triggers Translocation of MEN Components to Mother-Daughter Neck in Yeast. Molecular Biology of the Cell, 2003, 14, 4734-4743.	2.1	46
40	MEN, destruction and separation: mechanistic links between mitotic exit and cytokinesis in budding yeast. BioEssays, 2002, 24, 659-666.	2.5	30
41	Early Expressed Clb Proteins Allow Accumulation of Mitotic Cyclin by Inactivating Proteolytic Machinery during S Phase. Molecular and Cellular Biology, 2001, 21, 5071-5081.	2.3	45
42	Cdc20 protein contains a destruction-box but, unlike Clb2, its proteolysisis not acutely dependent on the activity of anaphase-promoting complex. FEBS Journal, 2000, 267, 434-449.	0.2	22
43	Exit from Mitosis in Budding Yeast. Molecular Cell, 2000, 5, 501-511.	9.7	150
44	Cdc4, a Protein Required for the Onset of S Phase, Serves an Essential Function during G ₂ /M Transition in <i>Saccharomyces cerevisiae</i> . Molecular and Cellular Biology, 1999, 19, 5512-5522.	2.3	34
45	<i>NDD1</i> , a High-Dosage Suppressor of <i>cdc28-1N</i> , Is Essential for Expression of a Subset of Late-S-Phase-Specific Genes in <i>Saccharomyces cerevisiae</i> . Molecular and Cellular Biology, 1999, 19, 3312-3327.	2.3	88
46	Cdc20 is essential for the cyclosome-mediated proteolysis of both Pds1 and Clb2 during M phase in budding yeast. Current Biology, 1998, 8, 231-237.	3.9	157
47	Arabidopsis profilins are functionally similar to yeast profilins: identification of a vascular bundle-specific profilin and a pollen-specific profilin. Plant Journal, 1996, 10, 269-279.	5.7	107
48	Molecular and genetic characterization of. Molecular Genetics and Genomics, 1996, 251, 38.	2.4	0
49	Regulation of p34CDC28 tyrosine phosphorylation is not required for entry into mitosis in S. cerevisiae. Nature, 1992, 355, 368-371.	27.8	308
50	The role of phosphorylation and the CDC28 protein kinase in cell cycle-regulated nuclear import of the S. cerevisiae transcription factor SW15. Cell, 1991, 66, 743-758.	28.9	529
51	The role of CDC28 and cyclins during mitosis in the budding yeast S. cerevisiae. Cell, 1991, 65, 145-161.	28.9	510