Nikolaus Rajewsky

List of Publications by Citations

Source: https://exaly.com/author-pdf/4686655/nikolaus-rajewsky-publications-by-citations.pdf

Version: 2024-04-10

This document has been generated based on the publications and citations recorded by exaly.com. For the latest version of this publication list, visit the link given above.

The third column is the impact factor (IF) of the journal, and the fourth column is the number of citations of the article.

68 43,879 127 143 h-index g-index citations papers 18.4 143 52,130 7.39 avg, IF L-index ext. citations ext. papers

#	Paper	IF	Citations
127	Circular RNAs are a large class of animal RNAs with regulatory potency. <i>Nature</i> , 2013 , 495, 333-8	50.4	4603
126	Combinatorial microRNA target predictions. <i>Nature Genetics</i> , 2005 , 37, 495-500	36.3	3846
125	Silencing of microRNAs in vivo with \text{\text{\text{\text{\text{\text{th}}}}} tagomirs\text{\text{\text{\text{\text{Nature}}}, \text{\text{2005}}, 438, 685-9}	50.4	3298
124	Widespread changes in protein synthesis induced by microRNAs. <i>Nature</i> , 2008 , 455, 58-63	50.4	2766
123	circRNA biogenesis competes with pre-mRNA splicing. <i>Molecular Cell</i> , 2014 , 56, 55-66	17.6	1753
122	A pancreatic islet-specific microRNA regulates insulin secretion. <i>Nature</i> , 2004 , 432, 226-30	50.4	1714
121	miRDeep2 accurately identifies known and hundreds of novel microRNA genes in seven animal clades. <i>Nucleic Acids Research</i> , 2012 , 40, 37-52	20.1	1631
120	Circular RNAs in the Mammalian Brain Are Highly Abundant, Conserved, and Dynamically Expressed. <i>Molecular Cell</i> , 2015 , 58, 870-85	17.6	1376
119	Regulation of the germinal center response by microRNA-155. <i>Science</i> , 2007 , 316, 604-8	33.3	1256
118	The evolution of gene regulation by transcription factors and microRNAs. <i>Nature Reviews Genetics</i> , 2007 , 8, 93-103	30.1	1155
117	Circ-ZNF609 Is a Circular RNA that Can Be Translated and Functions in Myogenesis. <i>Molecular Cell</i> , 2017 , 66, 22-37.e9	17.6	1146
116	Translation of CircRNAs. <i>Molecular Cell</i> , 2017 , 66, 9-21.e7	17.6	945
115	circBase: a database for circular RNAs. <i>Rna</i> , 2014 , 20, 1666-70	5.8	944
114	Discovering microRNAs from deep sequencing data using miRDeep. <i>Nature Biotechnology</i> , 2008 , 26, 40) 7 ₄ 145 ₅	936
113	microRNA target predictions in animals. <i>Nature Genetics</i> , 2006 , 38 Suppl, S8-13	36.3	890
112	MiR-150 controls B cell differentiation by targeting the transcription factor c-Myb. <i>Cell</i> , 2007 , 131, 146	- 59 6.2	848
111	Integrative analysis of the Caenorhabditis elegans genome by the modENCODE project. <i>Science</i> , 2010 , 330, 1775-87	33.3	744

(2004-2017)

110	Loss of a mammalian circular RNA locus causes miRNA deregulation and affects brain function. <i>Science</i> , 2017 , 357,	33.3	649
109	Analysis of intron sequences reveals hallmarks of circular RNA biogenesis in animals. <i>Cell Reports</i> , 2015 , 10, 170-7	10.6	643
108	A human snoRNA with microRNA-like functions. <i>Molecular Cell</i> , 2008 , 32, 519-28	17.6	624
107	Cell-type-specific signatures of microRNAs on target mRNA expression. <i>Proceedings of the National Academy of Sciences of the United States of America</i> , 2006 , 103, 2746-51	11.5	528
106	Transcriptome-wide analysis of regulatory interactions of the RNA-binding protein HuR. <i>Molecular Cell</i> , 2011 , 43, 340-52	17.6	513
105	Dicer ablation affects antibody diversity and cell survival in the B lymphocyte lineage. <i>Cell</i> , 2008 , 132, 860-74	56.2	486
104	Survival of resting mature B lymphocytes depends on BCR signaling via the Igalpha/beta heterodimer. <i>Cell</i> , 2004 , 117, 787-800	56.2	449
103	Identification and Characterization of Circular RNAs As a New Class of Putative Biomarkers in Human Blood. <i>PLoS ONE</i> , 2015 , 10, e0141214	3.7	423
102	Identification of small ORFs in vertebrates using ribosome footprinting and evolutionary conservation. <i>EMBO Journal</i> , 2014 , 33, 981-93	13	418
101	Natural selection on human microRNA binding sites inferred from SNP data. <i>Nature Genetics</i> , 2006 , 38, 1452-6	36.3	391
100	Circadian regulation of gene expression systems in the Drosophila head. <i>Neuron</i> , 2001 , 32, 657-71	13.9	383
99	PAGA: graph abstraction reconciles clustering with trajectory inference through a topology preserving map of single cells. <i>Genome Biology</i> , 2019 , 20, 59	18.3	369
98	MicroRNA profiling of the murine hematopoietic system. <i>Genome Biology</i> , 2005 , 6, R71	18.3	356
97	A genome-wide map of conserved microRNA targets in C. elegans. <i>Current Biology</i> , 2006 , 16, 460-71	6.3	353
96	Decay rates of human mRNAs: correlation with functional characteristics and sequence attributes. <i>Genome Research</i> , 2003 , 13, 1863-72	9.7	351
95	microRNA target predictions across seven Drosophila species and comparison to mammalian targets. <i>PLoS Computational Biology</i> , 2005 , 1, e13	5	349
94	The microRNA miR-182 is induced by IL-2 and promotes clonal expansion of activated helper T lymphocytes. <i>Nature Immunology</i> , 2010 , 11, 1057-62	19.1	269
93	Computational identification of microRNA targets. <i>Developmental Biology</i> , 2004 , 267, 529-35	3.1	258

92	Paternal diet defines offspring chromatin state and intergenerational obesity. <i>Cell</i> , 2014 , 159, 1352-64	56.2	253
91	The embryo at single-cell transcriptome resolution. <i>Science</i> , 2017 , 358, 194-199	33.3	243
90	Cell type atlas and lineage tree of a whole complex animal by single-cell transcriptomics. <i>Science</i> , 2018 , 360,	33.3	233
89	The International Human Epigenome Consortium: A Blueprint for Scientific Collaboration and Discovery. <i>Cell</i> , 2016 , 167, 1145-1149	56.2	232
88	The landscape of C. elegans 3WTRs. <i>Science</i> , 2010 , 329, 432-5	33.3	222
87	The impact of miRNA target sites in coding sequences and in 3\UTRs. <i>PLoS ONE</i> , 2011 , 6, e18067	3.7	216
86	The Translational Landscape of the Human Heart. <i>Cell</i> , 2019 , 178, 242-260.e29	56.2	210
85	Unambiguous identification of miRNA:target site interactions by different types of ligation reactions. <i>Molecular Cell</i> , 2014 , 54, 1042-1054	17.6	209
84	Timing, genetic requirements and functional consequences of somatic hypermutation during B-cell development. <i>Immunological Reviews</i> , 1987 , 96, 5-22	11.3	204
83	A map of human circular RNAs in clinically relevant tissues. <i>Journal of Molecular Medicine</i> , 2017 , 95, 117	9 ₅ 151 89	195
82	Transcriptional control in the segmentation gene network of Drosophila. <i>PLoS Biology</i> , 2004 , 2, E271	9.7	193
81	Competition between target sites of regulators shapes post-transcriptional gene regulation. Nature Reviews Genetics, 2015, 16, 113-26	30.1	182
80	Computational detection of genomic cis-regulatory modules applied to body patterning in the early Drosophila embryo. <i>BMC Bioinformatics</i> , 2002 , 3, 30	3.6	168
79	doRiNA: a database of RNA interactions in post-transcriptional regulation. <i>Nucleic Acids Research</i> , 2012 , 40, D180-6	20.1	151
78	Cell fixation and preservation for droplet-based single-cell transcriptomics. <i>BMC Biology</i> , 2017 , 15, 44	7.3	135
77	The oncogenic role of circPVT1 in head and neck squamous cell carcinoma is mediated through the mutant p53/YAP/TEAD transcription-competent complex. <i>Genome Biology</i> , 2017 , 18, 237	18.3	129
76	RNA-binding protein RBM20 represses splicing to orchestrate cardiac pre-mRNA processing. Journal of Clinical Investigation, 2014 , 124, 3419-30	15.9	129
75	In vivo and transcriptome-wide identification of RNA binding protein target sites. <i>Molecular Cell</i> , 2011 , 44, 828-40	17.6	124

(2012-2016)

74	Epigenomic Profiling of Human CD4 T Cells Supports a Linear Differentiation Model and Highlights Molecular Regulators of Memory Development. <i>Immunity</i> , 2016 , 45, 1148-1161	32.3	118
73	RNA localization is a key determinant of neurite-enriched proteome. <i>Nature Communications</i> , 2017 , 8, 583	17.4	118
72	Extensive identification and analysis of conserved small ORFs in animals. <i>Genome Biology</i> , 2015 , 16, 179	18.3	117
71	High-resolution profiling and discovery of planarian small RNAs. <i>Proceedings of the National Academy of Sciences of the United States of America</i> , 2009 , 106, 11546-51	11.5	114
70	Gene expression of pluripotency determinants is conserved between mammalian and planarian stem cells. <i>EMBO Journal</i> , 2012 , 31, 2755-69	13	113
69	Gene expression cartography. <i>Nature</i> , 2019 , 576, 132-137	50.4	109
68	DoRiNA 2.0upgrading the doRiNA database of RNA interactions in post-transcriptional regulation. <i>Nucleic Acids Research</i> , 2015 , 43, D160-7	20.1	97
67	De novo assembly and validation of planaria transcriptome by massive parallel sequencing and shotgun proteomics. <i>Genome Research</i> , 2011 , 21, 1193-200	9.7	90
66	A Single-Cell Transcriptome Atlas of the Mouse Glomerulus. <i>Journal of the American Society of Nephrology: JASN</i> , 2018 , 29, 2060-2068	12.7	87
65	Single-Cell Transcriptomics Characterizes Cell Types in the Subventricular Zone and Uncovers Molecular Defects Impairing Adult Neurogenesis. <i>Cell Reports</i> , 2018 , 25, 2457-2469.e8	10.6	82
64	A variety of dicer substrates in human and C. elegans. <i>Cell</i> , 2014 , 159, 1153-1167	56.2	80
63	Conservation of regulatory elements between two species of Drosophila. <i>BMC Bioinformatics</i> , 2003 , 4, 57	3.6	76
62	The Lupus Autoantigen La Prevents Mis-channeling of tRNA Fragments into the Human MicroRNA Pathway. <i>Molecular Cell</i> , 2016 , 63, 110-24	17.6	73
61	Large-scale sorting of C. elegans embryos reveals the dynamics of small RNA expression. <i>Nature Methods</i> , 2009 , 6, 745-51	21.6	72
60	Transcriptomic profiling of SARS-CoV-2 infected human cell lines identifies HSP90 as target for COVID-19 therapy. <i>IScience</i> , 2021 , 24, 102151	6.1	72
59	Deciphering the porcine intestinal microRNA transcriptome. <i>BMC Genomics</i> , 2010 , 11, 275	4.5	65
58	Conservation of mRNA and protein expression during development of C. elegans. <i>Cell Reports</i> , 2014 , 6, 565-77	10.6	64
57	The SNF2-like helicase HELLS mediates E2F3-dependent transcription and cellular transformation. <i>EMBO Journal</i> , 2012 , 31, 972-85	13	60

56	The evolution of DNA regulatory regions for proteo-gamma bacteria by interspecies comparisons. <i>Genome Research</i> , 2002 , 12, 298-308	9.7	58
55	LifeTime and improving European healthcare through cell-based interceptive medicine. <i>Nature</i> , 2020 , 587, 377-386	50.4	56
54	Probabilistic clustering of sequences: inferring new bacterial regulons by comparative genomics. <i>Proceedings of the National Academy of Sciences of the United States of America</i> , 2002 , 99, 7323-8	11.5	55
53	Epigenetic dynamics of monocyte-to-macrophage differentiation. <i>Epigenetics and Chromatin</i> , 2016 , 9, 33	5.8	54
52	FLAM-seq: full-length mRNA sequencing reveals principles of poly(A) tail length control. <i>Nature Methods</i> , 2019 , 16, 879-886	21.6	53
51	A cis element in the recombination activating gene locus regulates gene expression by counteracting a distant silencer. <i>Nature Immunology</i> , 2004 , 5, 443-50	19.1	53
50	Global characterization of the oocyte-to-embryo transition in Caenorhabditis elegans uncovers a novel mRNA clearance mechanism. <i>EMBO Journal</i> , 2014 , 33, 1751-66	13	52
49	Single-cell RNA-sequencing of herpes simplex virus 1-infected cells connects NRF2 activation to an antiviral program. <i>Nature Communications</i> , 2019 , 10, 4878	17.4	51
48	Insm1 cooperates with Neurod1 and Foxa2 to maintain mature pancreatic Etell function. <i>EMBO Journal</i> , 2015 , 34, 1417-33	13	50
47	Paternal RNA contributions in the Caenorhabditis elegans zygote. <i>EMBO Journal</i> , 2014 , 33, 1740-50	13	47
46	Identification of LIN28B-bound mRNAs reveals features of target recognition and regulation. <i>RNA Biology</i> , 2013 , 10, 1146-59	4.8	47
45	Select microRNAs are essential for early development in the sea urchin. <i>Developmental Biology</i> , 2012 , 362, 104-13	3.1	42
44	Conserved functional antagonism of CELF and MBNL proteins controls stem cell-specific alternative splicing in planarians. <i>ELife</i> , 2016 , 5,	8.9	39
43	miR-148a is upregulated by Twist1 and T-bet and promotes Th1-cell survival by regulating the proapoptotic gene Bim. <i>European Journal of Immunology</i> , 2015 , 45, 1192-205	6.1	34
42	Comprehensive analysis of translation from overexpressed circular RNAs reveals pervasive translation from linear transcripts. <i>Nucleic Acids Research</i> , 2020 , 48, 10368-10382	20.1	29
41	Correlating gene expression variation with cis-regulatory polymorphism in Saccharomyces cerevisiae. <i>Genome Biology and Evolution</i> , 2010 , 2, 697-707	3.9	28
40	A Highly Conserved Circular RNA Is Required to Keep Neural Cells in a Progenitor State in the Mammalian Brain. <i>Cell Reports</i> , 2020 , 30, 2170-2179.e5	10.6	27
39	Tracing tumorigenesis in a solid tumor model at single-cell resolution. <i>Nature Communications</i> , 2020 , 11, 991	17.4	24

(2019-2017)

38	Widespread activation of antisense transcription of the host genome during herpes simplex virus 1 infection. <i>Genome Biology</i> , 2017 , 18, 209	18.3	24
37	Graph abstraction reconciles clustering with trajectory inference through a topology preserving map of single cells		23
36	The CCR4-NOT complex mediates deadenylation and degradation of stem cell mRNAs and promotes planarian stem cell differentiation. <i>PLoS Genetics</i> , 2013 , 9, e1004003	6	21
35	Human muscle-derived CLEC14A-positive cells regenerate muscle independent of PAX7. <i>Nature Communications</i> , 2019 , 10, 5776	17.4	21
34	Roles of Long Noncoding RNAs and Circular RNAs in Translation. <i>Cold Spring Harbor Perspectives in Biology</i> , 2019 , 11,	10.2	20
33	Binding site discovery from nucleic acid sequences by discriminative learning of hidden Markov models. <i>Nucleic Acids Research</i> , 2014 , 42, 12995-3011	20.1	19
32	Single-Molecule Fluorescence In Situ Hybridization (FISH) of Circular RNA CDR1as. <i>Methods in Molecular Biology</i> , 2018 , 1724, 77-96	1.4	18
31	RNA-bioinformatics: Tools, services and databases for the analysis of RNA-based regulation. <i>Journal of Biotechnology</i> , 2017 , 261, 76-84	3.7	17
30	Defective metabolic programming impairs early neuronal morphogenesis in neural cultures and an organoid model of Leigh syndrome. <i>Nature Communications</i> , 2021 , 12, 1929	17.4	17
29	microRNAs regulate cell-to-cell variability of endogenous target gene expression in developing mouse thymocytes. <i>PLoS Genetics</i> , 2015 , 11, e1005020	6	16
28	Spatiotemporal m(i)RNA Architecture and 3WTR Regulation in the C. Lelegans Germline. <i>Developmental Cell</i> , 2018 , 47, 785-800.e8	10.2	16
27	Selective targeting of pro-inflammatory Th1 cells by microRNA-148a-specific antagomirs in vivo. <i>Journal of Autoimmunity</i> , 2018 , 89, 41-52	15.5	15
26	RCAS: an RNA centric annotation system for transcriptome-wide regions of interest. <i>Nucleic Acids Research</i> , 2017 , 45, e91	20.1	13
25	Post-transcriptional Regulation by 3WTRs Can Be Masked by Regulatory Elements in 5WTRs. <i>Cell Reports</i> , 2018 , 22, 3217-3226	10.6	13
24	Reexamining microRNA site accessibility in Drosophila: a population genomics study. <i>PLoS ONE</i> , 2009 , 4, e5681	3.7	13
23	MicroRNAs and the Operon paper. <i>Journal of Molecular Biology</i> , 2011 , 409, 70-5	6.5	12
22	Gene selection for optimal prediction of cell position in tissues from single-cell transcriptomics data. <i>Life Science Alliance</i> , 2020 , 3,	5.8	11
21	Identification of proteins and miRNAs that specifically bind an mRNA in vivo. <i>Nature</i> Communications, 2019 , 10, 4205	17.4	10

20	The transcriptome dynamics of single cells during the cell cycle. <i>Molecular Systems Biology</i> , 2020 , 16, e9946	12.2	9
19	Context-specific regulation of cell survival by a miRNA-controlled BIM rheostat. <i>Genes and Development</i> , 2019 , 33, 1673-1687	12.6	7
18	Charting a tissue from single-cell transcriptomes		7
17	Kidney Single-cell Transcriptomes Predict Spatial Corticomedullary Gene Expression and Tissue Osmolality Gradients. <i>Journal of the American Society of Nephrology: JASN</i> , 2021 , 32, 291-306	12.7	5
16	Cell fixation and preservation for droplet-based single-cell transcriptomics		4
15	Characterization of Transcription Termination-Associated RNAs: New Insights into their Biogenesis, Tailing, and Expression in Primary Tumors. <i>International Journal of Genomics</i> , 2018 , 2018, 1243858	2.5	3
14	Predicting cellular position in the Drosophila embryo from Single-Cell Transcriptomics data		3
13	Spacemake: processing and analysis of large-scale spatial transcriptomics data		2
12	Gene Expression Signatures of a Preclinical Mouse Model during Colorectal Cancer Progression under Low-Dose Metronomic Chemotherapy. <i>Cancers</i> , 2020 , 13,	6.6	2
11	A Probabilistic Cellular Automaton for Evolution. <i>Journal De Physique, I</i> , 1995 , 5, 1129-1134		2
10	NovoSpaRc: flexible spatial reconstruction of single-cell gene expression with optimal transport. <i>Nature Protocols</i> , 2021 , 16, 4177-4200	18.8	2
9	Optogenetic perturbations of RNA expression in tissue space		2
8	Mixed messages: Re-initiation factors regulate translation of animal mRNAs. <i>Cell Research</i> , 2014 , 24, 1383-4	24.7	1
7	Rapid nuclear deadenylation of mammalian messenger RNA		1
6	Regulation of spatial and temporal gene expression in an animal germline		1
5	Best practice standards for circular RNA research. <i>Nature Methods</i> ,	21.6	1
4	Essentials of miRNA-dependent Control of mRNA Translation and decay, miRNA Targeting Principles, and Methods for Target Identification 2017 , 19-38		O
3	Parallel genetics of regulatory sequences using scalable genome editing in vivo. <i>Cell Reports</i> , 2021 , 35, 108988	10.6	0

LIST OF PUBLICATIONS

Expression of Circ_Satb1 Is Decreased in Mesial Temporal Lobe Epilepsy and Regulates Dendritic Spine Morphology.. *Frontiers in Molecular Neuroscience*, **2022**, 15, 832133

6.1 0

Computational prediction of microRNA targets in vertebrates, fruitflies and nematodes172-186