
List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4686655/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Circular RNAs are a large class of animal RNAs with regulatory potency. Nature, 2013, 495, 333-338.	27.8	6,474
2	Combinatorial microRNA target predictions. Nature Genetics, 2005, 37, 495-500.	21.4	4,258
3	Silencing of microRNAs in vivo with â€ ⁻ antagomirs'. Nature, 2005, 438, 685-689.	27.8	3,706
4	Widespread changes in protein synthesis induced by microRNAs. Nature, 2008, 455, 58-63.	27.8	3,120
5	miRDeep2 accurately identifies known and hundreds of novel microRNA genes in seven animal clades. Nucleic Acids Research, 2012, 40, 37-52.	14.5	2,624
6	circRNA Biogenesis Competes with Pre-mRNA Splicing. Molecular Cell, 2014, 56, 55-66.	9.7	2,490
7	Circular RNAs in the Mammalian Brain Are Highly Abundant, Conserved, and Dynamically Expressed. Molecular Cell, 2015, 58, 870-885.	9.7	1,974
8	A pancreatic islet-specific microRNA regulates insulin secretion. Nature, 2004, 432, 226-230.	27.8	1,932
9	Circ-ZNF609 Is a Circular RNA that Can Be Translated and Functions in Myogenesis. Molecular Cell, 2017, 66, 22-37.e9.	9.7	1,672
10	Translation of CircRNAs. Molecular Cell, 2017, 66, 9-21.e7.	9.7	1,431
11	circBase: a database for circular RNAs. Rna, 2014, 20, 1666-1670.	3.5	1,417
12	Regulation of the Germinal Center Response by MicroRNA-155. Science, 2007, 316, 604-608.	12.6	1,393
13	The evolution of gene regulation by transcription factors and microRNAs. Nature Reviews Genetics, 2007, 8, 93-103.	16.3	1,371
14	Discovering microRNAs from deep sequencing data using miRDeep. Nature Biotechnology, 2008, 26, 407-415.	17.5	1,102
15	microRNA target predictions in animals. Nature Genetics, 2006, 38, S8-S13.	21.4	987
16	Loss of a mammalian circular RNA locus causes miRNA deregulation and affects brain function. Science, 2017, 357, .	12.6	978
17	MiR-150 Controls B Cell Differentiation by Targeting the Transcription Factor c-Myb. Cell, 2007, 131, 146-159.	28.9	965
18	Analysis of Intron Sequences Reveals Hallmarks of Circular RNA Biogenesis in Animals. Cell Reports, 2015, 10, 170-177.	6.4	918

#	Article	IF	CITATIONS
19	Integrative Analysis of the <i>Caenorhabditis elegans</i> Genome by the modENCODE Project. Science, 2010, 330, 1775-1787.	12.6	912
20	PAGA: graph abstraction reconciles clustering with trajectory inference through a topology preserving map of single cells. Genome Biology, 2019, 20, 59.	8.8	911
21	A Human snoRNA with MicroRNA-Like Functions. Molecular Cell, 2008, 32, 519-528.	9.7	738
22	Transcriptome-wide Analysis of Regulatory Interactions of the RNA-Binding Protein HuR. Molecular Cell, 2011, 43, 340-352.	9.7	640
23	Cell-type-specific signatures of microRNAs on target mRNA expression. Proceedings of the National Academy of Sciences of the United States of America, 2006, 103, 2746-2751.	7.1	602
24	Identification of small ORFs in vertebrates using ribosome footprinting and evolutionary conservation. EMBO Journal, 2014, 33, 981-993.	7.8	587
25	Dicer Ablation Affects Antibody Diversity and Cell Survival in the B Lymphocyte Lineage. Cell, 2008, 132, 860-874.	28.9	547
26	Identification and Characterization of Circular RNAs As a New Class of Putative Biomarkers in Human Blood. PLoS ONE, 2015, 10, e0141214.	2.5	542
27	Survival of Resting Mature B Lymphocytes Depends on BCR Signaling via the Igα∫β Heterodimer. Cell, 2004, 117, 787-800.	28.9	517
28	Decay Rates of Human mRNAs: Correlation With Functional Characteristics and Sequence Attributes. Genome Research, 2003, 13, 1863-1872.	5.5	467
29	Circadian Regulation of Gene Expression Systems in the Drosophila Head. Neuron, 2001, 32, 657-671.	8.1	442
30	Natural selection on human microRNA binding sites inferred from SNP data. Nature Genetics, 2006, 38, 1452-1456.	21.4	431
31	The Translational Landscape of the Human Heart. Cell, 2019, 178, 242-260.e29.	28.9	407
32	The International Human Epigenome Consortium: A Blueprint for Scientific Collaboration and Discovery. Cell, 2016, 167, 1145-1149.	28.9	404
33	microRNA Target Predictions across Seven Drosophila Species and Comparison to Mammalian Targets. PLoS Computational Biology, 2005, 1, e13.	3.2	393
34	MicroRNA profiling of the murine hematopoietic system. Genome Biology, 2005, 6, R71.	9.6	388
35	Cell type atlas and lineage tree of a whole complex animal by single-cell transcriptomics. Science, 2018, 360, .	12.6	381
36	A Genome-Wide Map of Conserved MicroRNA Targets in C. elegans. Current Biology, 2006, 16, 460-471.	3.9	380

3

#	Article	IF	CITATIONS
37	The <i>Drosophila</i> embryo at single-cell transcriptome resolution. Science, 2017, 358, 194-199.	12.6	352
38	Paternal Diet Defines Offspring Chromatin State and Intergenerational Obesity. Cell, 2014, 159, 1352-1364.	28.9	345
39	The microRNA miR-182 is induced by IL-2 and promotes clonal expansion of activated helper T lymphocytes. Nature Immunology, 2010, 11, 1057-1062.	14.5	304
40	A map of human circular RNAs in clinically relevant tissues. Journal of Molecular Medicine, 2017, 95, 1179-1189.	3.9	286
41	Computational identification of microRNA targets. Developmental Biology, 2004, 267, 529-535.	2.0	278
42	Unambiguous Identification of miRNA:Target Site Interactions by Different Types of Ligation Reactions. Molecular Cell, 2014, 54, 1042-1054.	9.7	258
43	The Landscape of <i>C. elegans</i> 3′UTRs. Science, 2010, 329, 432-435.	12.6	248
44	The Impact of miRNA Target Sites in Coding Sequences and in 3′UTRs. PLoS ONE, 2011, 6, e18067.	2.5	244
45	Timing, Genetic Requirements and Functional Consequences of Somatic Hypermutation during B-Cell Development. Immunological Reviews, 1987, 96, 5-22.	6.0	228
46	Competition between target sites of regulators shapes post-transcriptional gene regulation. Nature Reviews Genetics, 2015, 16, 113-126.	16.3	220
47	Transcriptional Control in the Segmentation Gene Network of Drosophila. PLoS Biology, 2004, 2, e271.	5.6	216
48	Gene expression cartography. Nature, 2019, 576, 132-137.	27.8	216
49	Transcriptomic profiling of SARS-CoV-2 infected human cell lines identifies HSP90 as target for COVID-19 therapy. IScience, 2021, 24, 102151.	4.1	202
50	Computational detection of genomic cis-regulatory modules applied to body patterning in the early Drosophila embryo. BMC Bioinformatics, 2002, 3, 30.	2.6	194
51	Cell fixation and preservation for droplet-based single-cell transcriptomics. BMC Biology, 2017, 15, 44.	3.8	186
52	Extensive identification and analysis of conserved small ORFs in animals. Genome Biology, 2015, 16, 179.	8.8	180
53	The oncogenic role of circPVT1 in head and neck squamous cell carcinoma is mediated through the mutant p53/YAP/TEAD transcription-competent complex. Genome Biology, 2017, 18, 237.	8.8	179
54	doRiNA: a database of RNA interactions in post-transcriptional regulation. Nucleic Acids Research, 2012, 40, D180-D186.	14.5	177

#	Article	IF	CITATIONS
55	RNA localization is a key determinant of neurite-enriched proteome. Nature Communications, 2017, 8, 583.	12.8	176
56	RNA-binding protein RBM20 represses splicing to orchestrate cardiac pre-mRNA processing. Journal of Clinical Investigation, 2014, 124, 3419-3430.	8.2	176
57	Epigenomic Profiling of Human CD4+ T Cells Supports a Linear Differentiation Model and Highlights Molecular Regulators of Memory Development. Immunity, 2016, 45, 1148-1161.	14.3	174
58	Single-Cell Transcriptomics Characterizes Cell Types in the Subventricular Zone and Uncovers Molecular Defects Impairing Adult Neurogenesis. Cell Reports, 2018, 25, 2457-2469.e8.	6.4	162
59	InÂVivo and Transcriptome-wide Identification of RNA Binding Protein Target Sites. Molecular Cell, 2011, 44, 828-840.	9.7	146
60	A Single-Cell Transcriptome Atlas of the Mouse Glomerulus. Journal of the American Society of Nephrology: JASN, 2018, 29, 2060-2068.	6.1	137
61	Gene expression of pluripotency determinants is conserved between mammalian and planarian stem cells. EMBO Journal, 2012, 31, 2755-2769.	7.8	136
62	DoRiNA 2.0—upgrading the doRiNA database of RNA interactions in post-transcriptional regulation. Nucleic Acids Research, 2015, 43, D160-D167.	14.5	136
63	High-resolution profiling and discovery of planarian small RNAs. Proceedings of the National Academy of Sciences of the United States of America, 2009, 106, 11546-11551.	7.1	128
64	FLAM-seq: full-length mRNA sequencing reveals principles of poly(A) tail length control. Nature Methods, 2019, 16, 879-886.	19.0	119
65	LifeTime and improving European healthcare through cell-based interceptive medicine. Nature, 2020, 587, 377-386.	27.8	108
66	The Lupus Autoantigen La Prevents Mis-channeling of tRNA Fragments into the Human MicroRNA Pathway. Molecular Cell, 2016, 63, 110-124.	9.7	107
67	A Variety of Dicer Substrates in Human and C.Âelegans. Cell, 2014, 159, 1153-1167.	28.9	106
68	De novo assembly and validation of planaria transcriptome by massive parallel sequencing and shotgun proteomics. Genome Research, 2011, 21, 1193-1200.	5.5	100
69	Conservation of mRNA and Protein Expression during Development of C.Âelegans. Cell Reports, 2014, 6, 565-577.	6.4	98
70	Single-cell RNA-sequencing of herpes simplex virus 1-infected cells connects NRF2 activation to an antiviral program. Nature Communications, 2019, 10, 4878.	12.8	96
71	Large-scale sorting of C. elegans embryos reveals the dynamics of small RNA expression. Nature Methods, 2009, 6, 745-751.	19.0	91
72	The Evolution of DNA Regulatory Regions for Proteo-Gamma Bacteria by Interspecies Comparisons. Genome Research, 2002, 12, 298-308.	5.5	86

#	Article	IF	CITATIONS
73	Conservation of regulatory elements between two species of Drosophila. BMC Bioinformatics, 2003, 4, 57.	2.6	84
74	Insm1 cooperates with <scp>N</scp> eurod1 and <scp>F</scp> oxa2 to maintain mature pancreatic β ell function. EMBO Journal, 2015, 34, 1417-1433.	7.8	77
75	Identification of LIN28B-bound mRNAs reveals features of target recognition and regulation. RNA Biology, 2013, 10, 1146-1159.	3.1	76
76	Epigenetic dynamics of monocyte-to-macrophage differentiation. Epigenetics and Chromatin, 2016, 9, 33.	3.9	73
77	Deciphering the porcine intestinal microRNA transcriptome. BMC Genomics, 2010, 11, 275.	2.8	71
78	A cis element in the recombination activating gene locus regulates gene expression by counteracting a distant silencer. Nature Immunology, 2004, 5, 443-450.	14.5	69
79	The SNF2-like helicase HELLS mediates E2F3-dependent transcription and cellular transformation. EMBO Journal, 2012, 31, 972-985.	7.8	68
80	Global characterization of the oocyteâ€ŧoâ€embryo transition in <i> <scp>C</scp> aenorhabditis elegans </i> uncovers a novel m <scp>RNA</scp> clearance mechanism. EMBO Journal, 2014, 33, 1751-1766.	7.8	68
81	Paternal <scp>RNA</scp> contributions in the <i>Caenorhabditis elegans</i> zygote. EMBO Journal, 2014, 33, 1740-1750.	7.8	67
82	Best practice standards for circular RNA research. Nature Methods, 2022, 19, 1208-1220.	19.0	58
83	Probabilistic clustering of sequences: Inferring new bacterial regulons by comparative genomics. Proceedings of the National Academy of Sciences of the United States of America, 2002, 99, 7323-7328.	7.1	57
84	Comprehensive analysis of translation from overexpressed circular RNAs reveals pervasive translation from linear transcripts. Nucleic Acids Research, 2020, 48, 10368-10382.	14.5	57
85	miRâ€148a is upregulated by Twist1 and Tâ€bet and promotes Th1â€cell survival by regulating the proapoptotic gene Bim. European Journal of Immunology, 2015, 45, 1192-1205.	2.9	56
86	Select microRNAs are essential for early development in the sea urchin. Developmental Biology, 2012, 362, 104-113.	2.0	55
87	Defective metabolic programming impairs early neuronal morphogenesis in neural cultures and an organoid model of Leigh syndrome. Nature Communications, 2021, 12, 1929.	12.8	55
88	NovoSpaRc: flexible spatial reconstruction of single-cell gene expression with optimal transport. Nature Protocols, 2021, 16, 4177-4200.	12.0	55
89	A Highly Conserved Circular RNA Is Required to Keep Neural Cells in a Progenitor State in the Mammalian Brain. Cell Reports, 2020, 30, 2170-2179.e5.	6.4	53
90	Widespread activation of antisense transcription of the host genome during herpes simplex virus 1 infection. Genome Biology, 2017, 18, 209.	8.8	49

#	Article	IF	CITATIONS
91	Conserved functional antagonism of CELF and MBNL proteins controls stem cell-specific alternative splicing in planarians. ELife, 2016, 5, .	6.0	48
92	Tracing tumorigenesis in a solid tumor model at single-cell resolution. Nature Communications, 2020, 11, 991.	12.8	44
93	Roles of Long Noncoding RNAs and Circular RNAs in Translation. Cold Spring Harbor Perspectives in Biology, 2019, 11, a032680.	5.5	38
94	The transcriptome dynamics of single cells during the cell cycle. Molecular Systems Biology, 2020, 16, e9946.	7.2	35
95	Correlating Gene Expression Variation with cis-Regulatory Polymorphism in Saccharomyces cerevisiae. Genome Biology and Evolution, 2010, 2, 697-707.	2.5	31
96	Selective targeting of pro-inflammatory Th1 cells by microRNA-148a-specific antagomirs inÂvivo. Journal of Autoimmunity, 2018, 89, 41-52.	6.5	30
97	Human muscle-derived CLEC14A-positive cells regenerate muscle independent of PAX7. Nature Communications, 2019, 10, 5776.	12.8	30
98	L(ou)sy miRNA targets?. Nature Structural and Molecular Biology, 2006, 13, 754-755.	8.2	29
99	The CCR4-NOT Complex Mediates Deadenylation and Degradation of Stem Cell mRNAs and Promotes Planarian Stem Cell Differentiation. PLoS Genetics, 2013, 9, e1004003.	3.5	29
100	Spatiotemporal m(i)RNA Architecture and 3′ UTR Regulation in the C.Âelegans Germline. Developmental Cell, 2018, 47, 785-800.e8.	7.0	27
101	Single-Molecule Fluorescence In Situ Hybridization (FISH) of Circular RNA CDR1as. Methods in Molecular Biology, 2018, 1724, 77-96.	0.9	26
102	Identification of proteins and miRNAs that specifically bind an mRNA in vivo. Nature Communications, 2019, 10, 4205.	12.8	26
103	Binding site discovery from nucleic acid sequences by discriminative learning of hidden Markov models. Nucleic Acids Research, 2014, 42, 12995-13011.	14.5	24
104	Post-transcriptional Regulation by 3′ UTRs Can Be Masked by Regulatory Elements in 5′ UTRs. Cell Reports, 2018, 22, 3217-3226.	6.4	24
105	RCAS: an RNA centric annotation system for transcriptome-wide regions of interest. Nucleic Acids Research, 2017, 45, e91-e91.	14.5	23
106	microRNAs Regulate Cell-to-Cell Variability of Endogenous Target Gene Expression in Developing Mouse Thymocytes. PLoS Genetics, 2015, 11, e1005020.	3.5	22
107	RNA-bioinformatics: Tools, services and databases for the analysis of RNA-based regulation. Journal of Biotechnology, 2017, 261, 76-84.	3.8	21
108	Gene selection for optimal prediction of cell position in tissues from single-cell transcriptomics data. Life Science Alliance, 2020, 3, e202000867.	2.8	20

#	Article	IF	CITATIONS
109	Kidney Single-cell Transcriptomes Predict Spatial Corticomedullary Gene Expression and Tissue Osmolality Gradients. Journal of the American Society of Nephrology: JASN, 2021, 32, 291-306.	6.1	18
110	microRNAs and the Operon Paper. Journal of Molecular Biology, 2011, 409, 70-75.	4.2	14
111	Reexamining microRNA Site Accessibility in Drosophila: A Population Genomics Study. PLoS ONE, 2009, 4, e5681.	2.5	14
112	Context-specific regulation of cell survival by a miRNA-controlled BIM rheostat. Genes and Development, 2019, 33, 1673-1687.	5.9	13
113	Parallel genetics of regulatory sequences using scalable genome editing inÂvivo. Cell Reports, 2021, 35, 108988.	6.4	9
114	Gene Expression Signatures of a Preclinical Mouse Model during Colorectal Cancer Progression under Low-Dose Metronomic Chemotherapy. Cancers, 2021, 13, 49.	3.7	7
115	Expression of Circ_Satb1 Is Decreased in Mesial Temporal Lobe Epilepsy and Regulates Dendritic Spine Morphology. Frontiers in Molecular Neuroscience, 2022, 15, 832133.	2.9	6
116	Characterization of Transcription Termination-Associated RNAs: New Insights into their Biogenesis, Tailing, and Expression in Primary Tumors. International Journal of Genomics, 2018, 2018, 1-11.	1.6	5
117	Mixed messages: Re-initiation factors regulate translation of animal mRNAs. Cell Research, 2014, 24, 1383-1384.	12.0	2
118	A Probabilistic Cellular Automaton for Evolution. Journal De Physique, I, 1995, 5, 1129-1134.	1.2	2
119	Essentials of miRNA-dependent Control of mRNA Translation and decay, miRNA Targeting Principles, and Methods for Target Identification. , 2017, , 19-38.		1
120	Estimation of cell- and tissue volumes. MicroPublication Biology, 2021, 2021, .	0.1	1
121	Optocoder: computational decoding of spatially indexed bead arrays. NAR Genomics and Bioinformatics, 2022, 4, .	3.2	1
122	Computational prediction of microRNA targets in vertebrates, fruitflies and nematodes. , 0, , 172-186.		0