Carl R Walkley

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4686380/publications.pdf

Version: 2024-02-01

110 9,318 papers citations

40 h-index 93 g-index

120 all docs 120 docs citations

120 times ranked 13884 citing authors

#	Article	IF	CITATIONS
1	Genome-wide screening identifies cell-cycle control as a synthetic lethal pathway with SRSF2P95H mutation. Blood Advances, 2022, 6, 2092-2106.	2.5	3
2	Patience is a virtue. Blood, 2022, 139, 481-482.	0.6	0
3	ADAR1 masks the cancer immunotherapeutic promise of ZBP1-driven necroptosis. Nature, 2022, 606, 594-602.	13.7	149
4	Direct identification of A-to-l editing sites with nanopore native RNA sequencing. Nature Methods, 2022, 19, 833-844.	9.0	35
5	Rothmund-Thomson Syndrome-Like RECQL4 Truncating Mutations Cause a Haploinsufficient Low-Bone-Mass Phenotype in Mice. Molecular and Cellular Biology, 2021, 41, .	1.1	5
6	What do editors do? Understanding the physiological functions of A-to-I RNA editing by adenosine deaminase acting on RNAs. Open Biology, 2020, 10, 200085.	1.5	31
7	Dynamic regulation of Z-DNA in the mouse prefrontal cortex by the RNA-editing enzyme Adar1 is required for fear extinction. Nature Neuroscience, 2020, 23, 718-729.	7.1	16
8	ADAR1-Dependent RNA Editing Promotes MET and iPSC Reprogramming by Alleviating ER Stress. Cell Stem Cell, 2020, 27, 300-314.e11.	5.2	22
9	Hematopoietic stem and progenitor cell-restricted Cdx2 expression induces transformation to myelodysplasia and acute leukemia. Nature Communications, 2020, 11, 3021.	5.8	15
10	Enhancing mitochondrial function in vivo rescues MDS-like anemia induced by pRb deficiency. Experimental Hematology, 2020, 88, 28-41.	0.2	6
11	3149 – DNA REPAIR AND CELL CYCLE ARE SYNTHETIC LETHAL PATHWAYS IN SRSF2P95H MUTATED CELLS. Experimental Hematology, 2020, 88, S84.	0.2	0
12	ATP-dependent helicase activity is dispensable for the physiological functions of Recql4. PLoS Genetics, 2019, 15, e1008266.	1.5	19
13	Osteosarcoma in the Post Genome Era: Preclinical Models and Approaches to Identify Tractable Therapeutic Targets. Current Osteoporosis Reports, 2019, 17, 343-352.	1.5	15
14	Smac mimetics LCL161 and GDC-0152 inhibit osteosarcoma growth and metastasis in mice. BMC Cancer, 2019, 19, 924.	1.1	24
15	Hemopoietic Cell Kinase amplification with Protein Tyrosine Phosphatase Receptor T depletion leads to polycythemia, aberrant marrow erythoid maturation, and splenomegaly. Scientific Reports, 2019, 9, 7050.	1.6	4
16	Murine Models of Bone Sarcomas. Methods in Molecular Biology, 2019, 1914, 331-342.	0.4	9
17	Defining the functions of adenosine-to-inosine RNA editing through hematology. Current Opinion in Hematology, 2019, 26, 241-248.	1.2	6
18	Cell death following the loss of ADAR1 mediated A-to-I RNA editing is not effected by the intrinsic apoptosis pathway. Cell Death and Disease, 2019, 10, 913.	2.7	13

#	Article	IF	CITATIONS
19	The majority of A-to-I RNA editing is not required for mammalian homeostasis. Genome Biology, 2019, 20, 268.	3.8	68
20	Modeling human RNA spliceosome mutations in the mouse: not all mice were created equal. Experimental Hematology, 2019, 70, 10-23.	0.2	13
21	Small animal models for the study of bone sarcoma pathogenesis:characteristics, therapeutic interests and limitations. Journal of Bone Oncology, 2018, 12, 7-13.	1.0	18
22	Murine models of osteosarcoma: A piece of the translational puzzle. Journal of Cellular Biochemistry, 2018, 119, 4241-4250.	1.2	16
23	mTORC1 plays an important role in osteoblastic regulation of B-lymphopoiesis. Scientific Reports, 2018, 8, 14501.	1.6	17
24	<scp>ADAR</scp> 1â€mediated <scp>RNA</scp> editing is required for thymic selfâ€tolerance and inhibition of autoimmunity. EMBO Reports, 2018, 19, .	2.0	47
25	The Cell Polarity and Scaffolding Protein, PAR3, Acts as A Tumour Suppressor in Acute Myeloid Leukemia Through Regulation of the Hippo Pathway. Experimental Hematology, 2018, 64, S63.	0.2	0
26	Tolerance to sustained activation of the cAMP/Creb pathway activity in osteoblastic cells is enabled by loss of p53. Cell Death and Disease, 2018, 9, 844.	2.7	12
27	Adar3 Is Involved in Learning and Memory in Mice. Frontiers in Neuroscience, 2018, 12, 243.	1.4	54
28	Srsf2 P95H initiates myeloid bias and myelodysplastic/myeloproliferative syndrome from hemopoietic stem cells. Blood, 2018, 132, 608-621.	0.6	45
29	mTORC1 Plays an Important Role in Skeletal Development by Controlling Preosteoblast Differentiation. Molecular and Cellular Biology, 2017, 37, .	1.1	51
30	Ssb1 and Ssb2 cooperate to regulate mouse hematopoietic stem and progenitor cells by resolving replicative stress. Blood, 2017, 129, 2479-2492.	0.6	18
31	Dynamic landscape and regulation of RNA editing in mammals. Nature, 2017, 550, 249-254.	13.7	495
32	Design, Synthesis, and Biological Activity of 1,2,3-Triazolobenzodiazepine BET Bromodomain Inhibitors. ACS Medicinal Chemistry Letters, 2017, 8, 1298-1303.	1.3	23
33	Protein recoding by ADAR1-mediated RNA editing is not essential for normal development and homeostasis. Genome Biology, 2017, 18, 166.	3.8	64
34	Rewriting the transcriptome: adenosine-to-inosine RNA editing by ADARs. Genome Biology, 2017, 18, 205.	3.8	161
35	The Asymmetric Cell Division Regulators Par3, Scribble and Pins/Gpsm2 Are Not Essential for Erythroid Development or Enucleation. PLoS ONE, 2017, 12, e0170295.	1.1	4
36	<scp>ADAR1</scp> , inosine and the immune sensing system: distinguishing self from nonâ€self. Wiley Interdisciplinary Reviews RNA, 2016, 7, 157-172.	3.2	54

3

#	Article	IF	Citations
37	Increased miR-155-5p and reduced miR-148a-3p contribute to the suppression of osteosarcoma cell death. Oncogene, 2016, 35, 5282-5294.	2.6	60
38	PDGF-AB and 5-Azacytidine induce conversion of somatic cells into tissue-regenerative multipotent stem cells. Proceedings of the National Academy of Sciences of the United States of America, 2016, 113, E2306-15.	3.3	40
39	The role of RNA editing by ADAR1 in prevention of innate immune sensing of self-RNA. Journal of Molecular Medicine, 2016, 94, 1095-1102.	1.7	26
40	Loss of ephrinB1 in osteogenic progenitor cells impedes endochondral ossification and compromises bone strength integrity during skeletal development. Bone, 2016, 93, 12-21.	1.4	19
41	Adenosine-to-inosine RNA editing by ADAR1 is essential for normal murine erythropoiesis. Experimental Hematology, 2016, 44, 947-963.	0.2	52
42	Defining the Minimal Factors Required for Erythropoiesis through Direct Lineage Conversion. Cell Reports, 2016, 15, 2550-2562.	2.9	48
43	The Transcription Factor ASCIZ and Its Target DYNLL1 Are Essential for the Development and Expansion of MYC-Driven B Cell Lymphoma. Cell Reports, 2016, 14, 1488-1499.	2.9	36
44	IAP antagonists sensitize murine osteosarcoma cells to killing by TNFα. Oncotarget, 2016, 7, 33866-33886.	0.8	17
45	Activation of PTHrP-cAMP-CREB1 signaling following p53 loss is essential for osteosarcoma initiation and maintenance. ELife, 2016, 5, .	2.8	38
46	Ciliary neurotrophic factor has intrinsic and extrinsic roles in regulating B cell differentiation and bone structure. Scientific Reports, 2015, 5, 15529.	1.6	14
47	BET inhibitors induce apoptosis through a MYC independent mechanism and synergise with CDK inhibitors to kill osteosarcoma cells. Scientific Reports, 2015, 5, 10120.	1.6	103
48	Brief Report: The Differential Roles of mTORC1 and mTORC2 in Mesenchymal Stem Cell Differentiation. Stem Cells, 2015, 33, 1359-1365.	1.4	82
49	Src family kinases and their role in hematological malignancies. Leukemia and Lymphoma, 2015, 56, 577-586.	0.6	19
50	What inhibitory factor 1 (WIF1) is a marker of osteoblastic differentiation stage and is not silenced by DNA methylation in osteosarcoma. Bone, 2015, 73, 223-232.	1.4	27
51	RNA editing by ADAR1 prevents MDA5 sensing of endogenous dsRNA as nonself. Science, 2015, 349, 1115-1120.	6.0	661
52	The DNA Helicase Recql4 Is Required for Normal Osteoblast Expansion and Osteosarcoma Formation. PLoS Genetics, 2015, 11, e1005160.	1.5	34
53	$RAR\hat{I}^3$ is a negative regulator of osteoclastogenesis. Journal of Steroid Biochemistry and Molecular Biology, 2015, 150, 46-53.	1.2	25
54	HIF- $1\hat{1}\pm$ is required for hematopoietic stem cell mobilization and 4-prolyl hydroxylase inhibitors enhance mobilization by stabilizing HIF- $1\hat{1}\pm$. Leukemia, 2015, 29, 1366-1378.	3.3	45

#	Article	IF	CITATIONS
55	Systematic Screening Identifies Dual PI3K and mTOR Inhibition as a Conserved Therapeutic Vulnerability in Osteosarcoma. Clinical Cancer Research, 2015, 21, 3216-3229.	3.2	58
56	Modeling osteosarcoma: in vitro and in vivo approaches. , 2015, , 195-204.		1
57	Knockdown of PTHR1 in osteosarcoma cells decreases invasion and growth and increases tumor differentiation in vivo. Oncogene, 2015, 34, 2922-2933.	2.6	45
58	Cdx2 Cooperates with Flt3-ITD to Induce Acute Myeloid Leukaemia in Mice. Blood, 2015, 126, 557-557.	0.6	0
59	PTHrP, its receptor, and protein kinase A activation in osteosarcoma. Molecular and Cellular Oncology, 2014, 1, e965624.	0.3	11
60	The SKI proto-oncogene enhances the in vivo repopulation of hematopoietic stem cells and causes myeloproliferative disease. Haematologica, 2014, 99, 647-655.	1.7	18
61	Erythroidâ€extrinsic regulation of normal erythropoiesis by retinoic acid receptors. British Journal of Haematology, 2014, 164, 280-285.	1.2	17
62	Cells of origin in osteosarcoma: Mesenchymal stem cells or osteoblast committed cells?. Bone, 2014, 62, 56-63.	1.4	166
63	Gene expression profiling to define the cell intrinsic role of the SKI proto-oncogene in hematopoiesis and myeloid neoplasms. Genomics Data, 2014, 2, 189-191.	1.3	1
64	Role of the polarity protein, scribble, in hematopoiesis and leukemia. Experimental Hematology, 2014, 42, S31.	0.2	0
65	The Rothmund-Thomson syndrome helicase RECQL4 is essential for hematopoiesis. Journal of Clinical Investigation, 2014, 124, 3551-3565.	3.9	48
66	Identification and Analysis of Oncogenic Pathways in Deletion 20q Acute Myeloid Leukaemia. Blood, 2014, 124, 5195-5195.	0.6	0
67	Direct Lineage Reprogramming of Murine Fibroblasts to Erythroid Progenitor Cells By Defined Factors. Blood, 2014, 124, 246-246.	0.6	0
68	Deciphering Hematopoietic Stem Cells in Their Niches: A Critical Appraisal of Genetic Models, Lineage Tracing, and Imaging Strategies. Cell Stem Cell, 2013, 13, 520-533.	5.2	148
69	Modeling distinct osteosarcoma subtypes in vivo using Cre:lox and lineage-restricted transgenic shRNA. Bone, 2013, 55, 166-178.	1.4	65
70	Darbepoietin-alfa has comparable erythropoietic stimulatory effects to recombinant erythropoietin whilst preserving the bone marrow microenvironment. Haematologica, 2013, 98, 686-690.	1.7	7
71	Immune response to RB1-regulated senescence limits radiation-induced osteosarcoma formation. Journal of Clinical Investigation, 2013, 123, 5351-5360.	3.9	54
72	A-To-I RNA Editing By ADAR1 Is Essential For Hematopoiesis. Blood, 2013, 122, 1199-1199.	0.6	1

#	Article	IF	CITATIONS
73	A Mouse Model Of Rothmund-Thomson Syndrome Reveals An Essential Role For Recql4 In Maintenance Of Hematopoiesis. Blood, 2013, 122, 591-591.	0.6	O
74	Modeling Myelodysplastic Syndromes In Mice By Altered Hoxa1 Spliceform Expression. Blood, 2013, 122, 97-97.	0.6	0
75	ADAR1 Is Essential For Erythroid Development. Blood, 2013, 122, 9-9.	0.6	13
76	The Zinc-finger protein ASCIZ regulates B cell development via DYNLL1 and Bim. Journal of Experimental Medicine, 2012, 209, 1629-1639.	4.2	35
77	Genetically engineered mouse models and human osteosarcoma. Clinical Sarcoma Research, 2012, 2, 19.	2.3	33
78	Fak depletion in both hematopoietic and nonhematopoietic niche cells leadsÂtoÂhematopoietic stem cell expansion. Experimental Hematology, 2012, 40, 307-317.e3.	0.2	20
79	Taking HSCs Down a Notch in Leukemia. Cell Stem Cell, 2011, 8, 602-603.	5.2	1
80	Erythropoietin couples erythropoiesis, B-lymphopoiesis, and bone homeostasis within the bone marrow microenvironment. Blood, 2011, 117, 5631-5642.	0.6	123
81	Telomere dysfunction induces metabolic and mitochondrial compromise. Nature, 2011, 470, 359-365.	13.7	1,093
82	Erythropoiesis, anemia and the bone marrow microenvironment. International Journal of Hematology, 2011, 93, 10-13.	0.7	18
83	Defining the hematopoietic stem cell niche: The chicken and the egg conundrum. Journal of Cellular Biochemistry, 2011, 112, 1486-1490.	1.2	8
84	Role of ADARs in Mouse Development. Current Topics in Microbiology and Immunology, 2011, 353, 197-220.	0.7	10
85	Hematopoietic AMPK \hat{l}^21 reduces mouse adipose tissue macrophage inflammation and insulin resistance in obesity. Journal of Clinical Investigation, 2011, 121, 4903-4915.	3.9	291
86	Modeling human osteosarcoma in the mouse: From bedside to bench. Bone, 2010, 47, 859-865.	1.4	32
87	Developmental and species-divergent globin switching are driven by BCL11A. Nature, 2009, 460, 1093-1097.	13.7	339
88	ADAR1 is essential for the maintenance of hematopoiesis and suppression of interferon signaling. Nature Immunology, 2009, 10, 109-115.	7.0	422
89	Rb and hematopoiesis: stem cells to anemia. Cell Division, 2008, 3, 13.	1.1	17
90	Conditional mouse osteosarcoma, dependent on p53 loss and potentiated by loss of Rb, mimics the human disease. Genes and Development, 2008, 22, 1662-1676.	2.7	326

#	Article	IF	Citations
91	<i>Rb</i> intrinsically promotes erythropoiesis by coupling cell cycle exit with mitochondrial biogenesis. Genes and Development, 2008, 22, 463-475.	2.7	118
92	Granulocyte Colony-Stimulating Factor and an RAR?? Specific Agonist, VTP195183, Synergize to Enhance the Mobilization of Hematopoietic Progenitor Cells. Transplantation, 2007, 83, 375-384.	0.5	21
93	A Microenvironment-Induced Myeloproliferative Syndrome Caused by Retinoic Acid Receptor \hat{I}^3 Deficiency. Cell, 2007, 129, 1097-1110.	13.5	490
94	Rb Regulates Interactions between Hematopoietic Stem Cells and Their BoneÂMarrow Microenvironment. Cell, 2007, 129, 1081-1095.	13.5	380
95	Prostaglandin E2 regulates vertebrate haematopoietic stem cell homeostasis. Nature, 2007, 447, 1007-1011.	13.7	1,037
96	Control of self-renewal and differentiation of hematopoietic stem cells by negative cell-cycle regulators. Experimental Hematology, 2007, 35, 94-95.	0.2	0
97	Rb Intrinsically Promotes Erythropoiesis by Coupling Cell Cycle Exit with Mitochondrial Biogenesis Blood, 2007, 110, 638-638.	0.6	0
98	Rb is dispensable for self-renewal and multilineage differentiation of adult hematopoietic stem cells. Proceedings of the National Academy of Sciences of the United States of America, 2006, 103, 9057-9062.	3.3	63
99	RARÎ ³ is critical for maintaining a balance between hematopoietic stem cell self-renewal and differentiation. Journal of Experimental Medicine, 2006, 203, 1283-1293.	4.2	181
100	$RAR\hat{l}^3$ is critical for maintaining a balance between hematopoietic stem cell self-renewal and differentiation. Journal of Cell Biology, 2006, 173, i9-i9.	2.3	0
101	Prostaglandin E2 Is a Potent Regulator of Vertebrate Hematopoietic Stem Cell Homeostasis Blood, 2006, 108, 680-680.	0.6	0
102	Negative cell-cycle regulators cooperatively control self-renewal and differentiation of haematopoietic stem cells. Nature Cell Biology, 2005, 7, 172-178.	4.6	105
103	Cell Division and Hematopoietic Stem Cells: Not Always Exhausting. Cell Cycle, 2005, 4, 893-896.	1.3	15
104	Osteopenia in Siahla Mutant Mice. Journal of Biological Chemistry, 2004, 279, 29583-29588.	1.6	11
105	Terminal osteoblast differentiation, mediated by runx2 and p27KIP1, is disrupted in osteosarcoma. Journal of Cell Biology, 2004, 167, 925-934.	2.3	198
106	MAD1 and c-MYC regulate UBF and rDNA transcription during granulocyte differentiation. EMBO Journal, 2004, 23, 3325-3335.	3.5	166
107	Identification of the molecular requirements for an RARα-mediated cell cycle arrest during granulocytic differentiation. Blood, 2004, 103, 1286-1295.	0.6	36
108	Generation and Analysis of Siah2 Mutant Mice. Molecular and Cellular Biology, 2003, 23, 9150-9161.	1.1	69

#	Article	IF	CITATIONS
109	MAD1 and p27 KIP1 Cooperate To Promote Terminal Differentiation of Granulocytes and To Inhibit Myc Expression and Cyclin E-CDK2 Activity. Molecular and Cellular Biology, 2002, 22, 3014-3023.	1.1	58
110	Retinoic acid receptor antagonism in vivo expands the numbers of precursor cells during granulopoiesis. Leukemia, 2002, 16, 1763-1772.	3.3	54