
Gaëlle Legube

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4686072/publications.pdf Version: 2024-02-01

CAÃULLE LECLIRE

#	Article	IF	CITATIONS
1	Human HDAC1 and HDAC2 function in the DNA-damage response to promote DNA nonhomologous end-joining. Nature Structural and Molecular Biology, 2010, 17, 1144-1151.	8.2	542
2	Transcriptionally active chromatin recruits homologous recombination at DNA double-strand breaks. Nature Structural and Molecular Biology, 2014, 21, 366-374.	8.2	536
3	High-resolution profiling of γH2AX around DNA double strand breaks in the mammalian genome. EMBO Journal, 2010, 29, 1446-1457.	7.8	442
4	SETD2-Dependent Histone H3K36 Trimethylation Is Required for Homologous Recombination Repair and Genome Stability. Cell Reports, 2014, 7, 2006-2018.	6.4	370
5	Senataxin resolves RNA:DNA hybrids forming at DNA double-strand breaks to prevent translocations. Nature Communications, 2018, 9, 533.	12.8	252
6	Comprehensive Mapping of Histone Modifications at DNA Double-Strand Breaks Deciphers Repair Pathway Chromatin Signatures. Molecular Cell, 2018, 72, 250-262.e6.	9.7	232
7	Genome-wide mapping of long-range contacts unveils clustering of DNA double-strand breaks at damaged active genes. Nature Structural and Molecular Biology, 2017, 24, 353-361.	8.2	221
8	Screen identifies bromodomain protein ZMYND8 in chromatin recognition of transcription-associated DNA damage that promotes homologous recombination. Genes and Development, 2015, 29, 197-211.	5.9	204
9	The TIP60 Complex Regulates Bivalent Chromatin Recognition by 53BP1 through Direct H4K20me Binding and H2AK15 Acetylation. Molecular Cell, 2016, 62, 409-421.	9.7	198
10	Quantitation of DNA double-strand break resection intermediates in human cells. Nucleic Acids Research, 2014, 42, e19-e19.	14.5	197
11	Genome editing in primary cells and in vivo using viral-derived Nanoblades loaded with Cas9-sgRNA ribonucleoproteins. Nature Communications, 2019, 10, 45.	12.8	195
12	Loop extrusion as a mechanism for formation of DNA damage repair foci. Nature, 2021, 590, 660-665.	27.8	175
13	Histone demethylase KDM5A regulates the ZMYND8–NuRD chromatin remodeler to promote DNA repair. Journal of Cell Biology, 2017, 216, 1959-1974.	5.2	132
14	Transcription-Coupled DNA Double-Strand Break Repair: Active Genes Need Special Care. Journal of Molecular Biology, 2017, 429, 1277-1288.	4.2	119
15	Cohesin Protects Genes against γH2AX Induced by DNA Double-Strand Breaks. PLoS Genetics, 2012, 8, e1002460.	3.5	111
16	Non-redundant Functions of ATM and DNA-PKcs in Response to DNA Double-Strand Breaks. Cell Reports, 2015, 13, 1598-1609.	6.4	104
17	Studying DNA Double-Strand Break Repair: An Ever-Growing Toolbox. Frontiers in Molecular Biosciences, 2020, 7, 24.	3.5	99
18	R-loops as Janus-faced modulators of DNA repair. Nature Cell Biology, 2021, 23, 305-313.	10.3	94

Gaëlle Legube

#	Article	IF	CITATIONS
19	DNA double strand break repair pathway choice: a chromatin based decision?. Nucleus, 2015, 6, 107-113.	2.2	87
20	Dynamics of yeast histone H2A and H2B phosphorylation in response to a double-strand break. Nature Structural and Molecular Biology, 2014, 21, 103-109.	8.2	85
21	A Snapshot on the Cis Chromatin Response to DNA Double-Strand Breaks. Trends in Genetics, 2019, 35, 330-345.	6.7	83
22	A cohesin/HUSH- and LINC-dependent pathway controls ribosomal DNA double-strand break repair. Genes and Development, 2019, 33, 1175-1190.	5.9	78
23	DNA-PK triggers histone ubiquitination and signaling in response to DNA double-strand breaks produced during the repair of transcription-blocking topoisomerase I lesions. Nucleic Acids Research, 2016, 44, 1161-1178.	14.5	75
24	Non-canonical DNA/RNA structures during Transcription-Coupled Double-Strand Break Repair: Roadblocks or Bona fide repair intermediates?. DNA Repair, 2019, 81, 102661.	2.8	73
25	Organizing DNA repair in the nucleus: DSBs hit the road. Current Opinion in Cell Biology, 2017, 46, 1-8.	5.4	57
26	Deciphering the chromatin landscape induced around DNA double strand breaks. Cell Cycle, 2010, 9, 3035-3044.	2.6	53
27	Quantifying DNA double-strand breaks induced by site-specific endonucleases in living cells by ligation-mediated purification. Nature Protocols, 2014, 9, 517-528.	12.0	32
28	Taming Tricky DSBs: ATM on duty. DNA Repair, 2017, 56, 84-91.	2.8	30
29	The Secret Life of Chromosome Loops upon DNA Double-Strand Break. Journal of Molecular Biology, 2020, 432, 724-736.	4.2	28
30	A POLD3/BLM dependent pathway handles DSBs in transcribed chromatin upon excessive RNA:DNA hybrid accumulation. Nature Communications, 2022, 13, 2012.	12.8	20
31	m6A RNA modification as a new player in R-loop regulation. Nature Genetics, 2020, 52, 27-28.	21.4	18
32	A TAD closer to ATM. Molecular and Cellular Oncology, 2016, 3, e1134411.	0.7	12
33	A meeting at risk: Unrepaired DSBs go for broke. Nucleus, 2017, 8, 589-599.	2.2	8
34	Nuclear HMGB1 protects from nonalcoholic fatty liver disease through negative regulation of liver X receptor. Science Advances, 2022, 8, eabg9055.	10.3	7
35	Repair of DNA double-strand breaks in RNAPI- and RNAPII-transcribed loci. DNA Repair, 2021, 104, 103139.	2.8	6
36	Analyzing Homologous Recombination at a Genome-Wide Level. Methods in Molecular Biology, 2021, 2153, 427-438.	0.9	1