Amanda Barnard

List of Publications by Citations

Source: https://exaly.com/author-pdf/4686053/amanda-barnard-publications-by-citations.pdf

Version: 2024-04-17

This document has been generated based on the publications and citations recorded by exaly.com. For the latest version of this publication list, visit the link given above.

The third column is the impact factor (IF) of the journal, and the fourth column is the number of citations of the article.

81 8,374 48 239 h-index g-index citations papers 6.8 9,096 6.7 254 L-index avg, IF ext. citations ext. papers

#	Paper	IF	Citations
239	Prediction of TiO2 nanoparticle phase and shape transitions controlled by surface chemistry. <i>Nano Letters</i> , 2005 , 5, 1261-6	11.5	556
238	Observation and control of blinking nitrogen-vacancy centres in discrete nanodiamonds. <i>Nature Nanotechnology</i> , 2010 , 5, 345-9	28.7	354
237	A model for the phase stability of arbitrary nanoparticles as a function of size and shape. <i>Journal of Chemical Physics</i> , 2004 , 121, 4276-83	3.9	234
236	Crystallinity and surface electrostatics of diamond nanocrystals. <i>Journal of Materials Chemistry</i> , 2007 , 17, 4811		199
235	Nanogold: a quantitative phase map. ACS Nano, 2009, 3, 1431-6	16.7	197
234	Effects of particle morphology and surface hydrogenation on the phase stability of TiO2. <i>Physical Review B</i> , 2004 , 70,	3.3	191
233	Modeling the Morphology and Phase Stability of TiO2 Nanocrystals in Water. <i>Journal of Chemical Theory and Computation</i> , 2005 , 1, 107-16	6.4	183
232	Naturally occurring iron oxide nanoparticles: morphology, surface chemistry and environmental stability. <i>Journal of Materials Chemistry A</i> , 2013 , 1, 27-42	13	170
231	Modelling of nanoparticles: approaches to morphology and evolution. <i>Reports on Progress in Physics</i> , 2010 , 73, 086502	14.4	147
230	Self-assembly in nanodiamond agglutinates. <i>Journal of Materials Chemistry</i> , 2008 , 18, 4038		139
229	Equilibrium morphology of face-centered cubic gold nanoparticles >3 nm and the shape changes induced by temperature. <i>Journal of Physical Chemistry B</i> , 2005 , 109, 24465-72	3.4	131
228	Diamond standard in diagnostics: nanodiamond biolabels make their mark. <i>Analyst, The</i> , 2009 , 134, 175	1 5 64	126
227	Shaping Nanometer-Scale Architecture Through Surface Chemistry. <i>Advanced Materials</i> , 2005 , 17, 965-9	7214	122
226	Size, Shape, Stability, and Color of Plasmonic Silver Nanoparticles. <i>Journal of Physical Chemistry C</i> , 2014 , 118, 9128-9136	3.8	117
225	Confirmation of the electrostatic self-assembly of nanodiamonds. <i>Nanoscale</i> , 2011 , 3, 958-62	7.7	108
224	Nanodiamond Photoemitters Based on Strong Narrow-Band Luminescence from Silicon-Vacancy Defects. <i>Advanced Materials</i> , 2009 , 21, 808-812	24	108
223	Predicting the Energetics, Phase Stability, and Morphology Evolution of Faceted and Spherical Anatase Nanocrystals. <i>Journal of Physical Chemistry B</i> , 2004 , 108, 18435-18440	3.4	106

(2003-2005)

222	Anatase and rutile surfaces with adsorbates representative of acidic and basic conditions. <i>Surface Science</i> , 2005 , 582, 173-188	1.8	101	
221	Structural relaxation and relative stability of nanodiamond morphologies. <i>Diamond and Related Materials</i> , 2003 , 12, 1867-1872	3.5	100	
220	Coexistence of bucky diamond with nanodiamond and fullerene carbon phases. <i>Physical Review B</i> , 2003 , 68,	3.3	100	
219	Atomistic simulation and measurement of pH dependent cancer therapeutic interactions with nanodiamond carrier. <i>Molecular Pharmaceutics</i> , 2011 , 8, 368-74	5.6	97	
218	A thermodynamic model for the shape and stability of twinned nanostructures. <i>Journal of Physical Chemistry B</i> , 2006 , 110, 24498-504	3.4	97	
217	Thermodynamic modelling of nanomorphologies of hematite and goethite. <i>Journal of Materials Chemistry</i> , 2011 , 21, 11566		95	
216	Resolving the structure of active sites on platinum catalytic nanoparticles. <i>Nano Letters</i> , 2010 , 10, 3073	-6 1.5	94	
215	Towards chromate-free corrosion inhibitors: structureproperty models for organic alternatives. <i>Green Chemistry</i> , 2014 , 16, 3349-3357	10	93	
214	Prediction and measurement of the size-dependent stability of fluorescence in diamond over the entire nanoscale. <i>Nano Letters</i> , 2009 , 9, 3555-64	11.5	84	
213	Size dependent phase stability of carbon nanoparticles: Nanodiamond versus fullerenes. <i>Journal of Chemical Physics</i> , 2003 , 118, 5094-5097	3.9	83	
212	Structure and Energetics of Single-Walled Armchair and Zigzag Silicon Nanotubes. <i>Journal of Physical Chemistry B</i> , 2003 , 107, 7577-7581	3.4	79	
211	An environmentally sensitive phase map of titania nanocrystals. ACS Nano, 2008, 2, 2237-42	16.7	78	
210	Nanohazards: knowledge is our first defence. <i>Nature Materials</i> , 2006 , 5, 245-8	27	76	
209	One-to-one comparison of sunscreen efficacy, aesthetics and potential nanotoxicity. <i>Nature Nanotechnology</i> , 2010 , 5, 271-4	28.7	69	
208	ZnO nanowires and nanobelts: Shape selection and thermodynamic modeling. <i>Applied Physics Letters</i> , 2007 , 90, 143116	3.4	69	
207	Thermal stability of graphene edge structure and graphene nanoflakes. <i>Journal of Chemical Physics</i> , 2008 , 128, 094707	3.9	68	
206	Predicting the shape and structure of face-centered cubic gold nanocrystals smaller than 3 nm. <i>ChemPhysChem</i> , 2006 , 7, 1544-53	3.2	68	
205	Ab Initio Modeling of Diamond Nanowire Structures. <i>Nano Letters</i> , 2003 , 3, 1323-1328	11.5	68	

204	Activity of ZnO polar surfaces: an insight from surface energies. <i>Physical Chemistry Chemical Physics</i> , 2014 , 16, 22139-44	3.6	67
203	Ab initio modelling of the stability of nanocrystalline diamond morphologies. <i>Philosophical Magazine Letters</i> , 2003 , 83, 39-45	1	63
202	Substitutional nitrogen in nanodiamond and bucky-diamond particles. <i>Journal of Physical Chemistry B</i> , 2005 , 109, 17107-12	3.4	62
201	Origin of nanomorphology: does a complete theory of nanoparticle evolution exist?. <i>Journal of Materials Chemistry</i> , 2010 , 20, 416-421		61
200	Direct comparison of kinetic and thermodynamic influences on gold nanomorphology. <i>Accounts of Chemical Research</i> , 2012 , 45, 1688-97	24.3	59
199	Geometrical Properties Can Predict CO2 and N2 Adsorption Performance of Metal-Organic Frameworks (MOFs) at Low Pressure. <i>ACS Combinatorial Science</i> , 2016 , 18, 243-52	3.9	59
198	Modeling the iron oxides and oxyhydroxides for the prediction of environmentally sensitive phase transformations. <i>Physical Review B</i> , 2011 , 83,	3.3	58
197	Three-Dimensional Branched and Faceted Gold-Ruthenium Nanoparticles: Using Nanostructure to Improve Stability in Oxygen Evolution Electrocatalysis. <i>Angewandte Chemie - International Edition</i> , 2018 , 57, 10241-10245	16.4	57
196	Modeling the thermostability of surface functionalisation by oxygen, hydroxyl, and water on nanodiamonds. <i>Nanoscale</i> , 2011 , 3, 2566-75	7.7	57
195	Controlled Evolution of Carbon Nanotubes Coated by Nanodiamond: the Realization of a New Class of Hybrid Nanomaterials. <i>Chemistry of Materials</i> , 2005 , 17, 3214-3220	9.6	57
194	Safe, stable and effective nanotechnology: phase mapping of ZnS nanoparticles. <i>Journal of Materials Chemistry</i> , 2010 , 20, 4971		54
193	Modeling the structure and electronic properties of TiO2 nanoparticles. <i>Physical Review B</i> , 2006 , 73,	3.3	52
192	Phase stability of nanocarbon in one dimension: nanotubes versus diamond nanowires. <i>Journal of Chemical Physics</i> , 2004 , 120, 3817-21	3.9	49
191	How can ab initio simulations address risks in nanotech?. <i>Nature Nanotechnology</i> , 2009 , 4, 332-5	28.7	48
190	Modelling the role of size, edge structure and terminations on the electronic properties of graphene nano-flakes. <i>Modelling and Simulation in Materials Science and Engineering</i> , 2011 , 19, 054001	2	47
189	Shape and Thermodynamic Stability of Pyrite FeS2Nanocrystals and Nanorods. <i>Journal of Physical Chemistry C</i> , 2007 , 111, 11742-11746	3.8	47
188	Modelling the effect of particle shape on the phase stability of ZrO2nanoparticles. <i>Nanotechnology</i> , 2006 , 17, 3039-3047	3.4	47
187	Machine Learning for Silver Nanoparticle Electron Transfer Property Prediction. <i>Journal of Chemical Information and Modeling</i> , 2017 , 57, 2413-2423	6.1	44

(2012-2006)

186	Substitutional boron in nanodiamond, bucky-diamond, and nanocrystalline diamond grain boundaries. <i>Journal of Physical Chemistry B</i> , 2006 , 110, 19307-14	3.4	44	
185	First Principles and Thermodynamic Modeling of CdS Surfaces and Nanorods. <i>Journal of Physical Chemistry C</i> , 2007 , 111, 18112-18117	3.8	40	
184	Stability of Nanodiamond Surfaces Exposed to N, NH, and NH2. <i>Journal of Physical Chemistry C</i> , 2011 , 115, 6218-6228	3.8	39	
183	Harnessing the influence of reactive edges and defects of graphene substrates for achieving complete cycle of room-temperature molecular sensing. <i>Small</i> , 2013 , 9, 3993-9	11	38	
182	Functionalized Nanodiamonds for Biological and Medical Applications. <i>Journal of Nanoscience and Nanotechnology</i> , 2015 , 15, 989-99	1.3	37	
181	Electronic band gaps of diamond nanowires. <i>Physical Review B</i> , 2003 , 68,	3.3	37	
180	Nanoinformatics, and the big challenges for the science of small things. <i>Nanoscale</i> , 2019 , 11, 19190-192	20/17	36	
179	Shape-Dependent Confinement of the Nanodiamond Band Gap. Crystal Growth and Design, 2009, 9, 486	50 j.4 86	336	
178	Modeling the preferred shape, orientation and aspect ratio of gold nanorods. <i>Journal of Materials Chemistry</i> , 2007 , 17, 3315		36	
177	Interparticle Interactions and Self-Assembly of Functionalized Nanodiamonds. <i>Journal of Physical Chemistry Letters</i> , 2012 , 3, 896-901	6.4	35	
176	Can we predict the location of impurities in diamond nanoparticles?. <i>Diamond and Related Materials</i> , 2007 , 16, 2078-2082	3.5	35	
175	Using theory and modelling to investigate shape at the nanoscale. <i>Journal of Materials Chemistry</i> , 2006 , 16, 813-815		35	
174	Modelling nanoscale FeS2 formation in sulfur rich conditions. <i>Journal of Materials Chemistry</i> , 2009 , 19, 3389		34	
173	Predicting the distribution and stability of photoactive defect centers in nanodiamond biomarkers. Journal of Materials Chemistry, 2009 , 19, 360-365		33	
172	Modelling the formation of high aspect CdSe quantum wires: axial-growth versus oriented-attachment mechanisms. <i>Nanotechnology</i> , 2006 , 17, 5707-14	3.4	33	
171	Mapping the location and configuration of nitrogen in diamond nanoparticles. <i>Nanotechnology</i> , 2007 , 18, 025702	3.4	33	
170	Theory and modeling of nanocarbon phase stability. <i>Diamond and Related Materials</i> , 2006 , 15, 285-291	3.5	31	
169	Quantum mechanical properties of graphene nano-flakes and quantum dots. <i>Nanoscale</i> , 2012 , 4, 6761-7	77.7	30	

168	Combining Theory and Experiment in Determining the Surface Chemistry of Nanocrystals. <i>Chemistry of Materials</i> , 2008 , 20, 5460-5463	9.6	30
167	Density Functional Study of H-Induced Defects as Nucleation Sites in Hybrid Carbon Nanomaterials. <i>Chemistry of Materials</i> , 2005 , 17, 527-535	9.6	30
166	Modeling of Stability and Phase Transformations in Quasi-Zero Dimensional Nanocarbon Systems. Journal of Computational and Theoretical Nanoscience, 2005 , 2, 180-201	0.3	30
165	The impact of structural polydispersivity on the surface electrostatic potential of nanodiamond. <i>Nanoscale</i> , 2014 , 6, 1188-94	7.7	29
164	Statistics, damned statistics and nanoscience - using data science to meet the challenge of nanomaterial complexity. <i>Nanoscale Horizons</i> , 2016 , 1, 89-95	10.8	28
163	Contrasting Effects of Nanoparticle Binding on Protein Denaturation. <i>Journal of Physical Chemistry C</i> , 2014 , 118, 22069-22078	3.8	28
162	Size- and shape-dependence of the graphene to graphane transformation in the absence of hydrogen. <i>Journal of Materials Chemistry</i> , 2010 , 20, 10459		28
161	Size dependent surface reconstruction in detonation nanodiamonds. <i>Nanoscale Horizons</i> , 2018 , 3, 213-2	2175.8	27
160	Identification of Nanoparticle Prototypes and Archetypes. ACS Nano, 2015, 9, 11980-92	16.7	26
159	Morphological and phase stability of zinc blende, amorphous and mixed core-shell ZnS nanoparticles. <i>Nanoscale</i> , 2010 , 2, 2294-301	7.7	26
158	Comparative Hartree-Fock and density-functional theory study of cubic and hexagonal diamond. <i>The Philosophical Magazine: Physics of Condensed Matter B, Statistical Mechanics, Electronic, Optical and Magnetic Properties</i> , 2002 , 82, 1767-1776		26
157	Geometrical features can predict electronic properties of graphene nanoflakes. <i>Carbon</i> , 2016 , 103, 142	-1:504	25
156	Anisotropic adsorption and distribution of immobilized carboxyl on nanodiamond. <i>Nanoscale</i> , 2014 , 6, 14185-9	7.7	25
155	Modelling the role of size, edge structure and terminations on the electronic properties of trigonal graphene nanoflakes. <i>Nanotechnology</i> , 2012 , 23, 065707	3.4	25
154	Thermodynamic Cartography and Structure/Property Mapping of Commercial Platinum Catalysts. <i>ACS Catalysis</i> , 2011 , 1, 76-81	13.1	25
153	Transformation of graphene into graphane in the absence of hydrogen. Carbon, 2010, 48, 981-986	10.4	25
152	Ab initio modelling of band states in doped diamond. <i>Philosophical Magazine</i> , 2003 , 83, 1163-1174	1.6	25
151	Counting vacancies and nitrogen-vacancy centers in detonation nanodiamond. <i>Nanoscale</i> , 2016 , 8, 1054	18 75 72	25

(2003-2013)

150	Can hematite nanoparticles be an environmental indicator?. <i>Energy and Environmental Science</i> , 2013 , 6, 561-569	35.4	24	
149	Size- and shape-dependent phase transformations in wurtzite ZnS nanostructures. <i>Physical Chemistry Chemical Physics</i> , 2012 , 14, 9871-9	3.6	24	
148	Morphology mapping of platinum catalysts over the entire nanoscale. <i>Catalysis Science and Technology</i> , 2011 , 1, 1440	5.5	24	
147	Computational strategies for predicting the potential risks associated with nanotechnology. <i>Nanoscale</i> , 2009 , 1, 89-95	7.7	24	
146	First Principles Investigations of Diamond Ultrananocrystals. <i>International Journal of Modern Physics B</i> , 2003 , 17, 3865-3879	1.1	24	
145	Hydrogenation of Nanodiamond Surfaces: Structure and Effects on Crystalline Stability. <i>Surface Review and Letters</i> , 2003 , 10, 233-239	1.1	23	
144	Development of an improved Stillinger-Weber potential for tetrahedral carbon using ab initio (Hartree-Fock and MP2) methods. <i>Molecular Physics</i> , 2002 , 100, 1517-1525	1.7	23	
143	Morphology of Zinc Oxide Nanoparticles and Nanowires: Role of Surface and Edge Energies. Journal of Physical Chemistry C, 2016 , 120, 9498-9505	3.8	23	
142	Surface phase diagram and thermodynamic stability of functionalisation of nanodiamonds. <i>Journal of Materials Chemistry</i> , 2012 , 22, 16774		22	
141	Kinetic modelling of the shape-dependent evolution of faceted gold nanoparticles. <i>Journal of Materials Chemistry</i> , 2011 , 21, 12239		22	
140	Machine Learning Prediction of the Energy Gap of Graphene Nanoflakes Using Topological Autocorrelation Vectors. <i>ACS Combinatorial Science</i> , 2016 , 18, 661-664	3.9	22	
139	Surface structure of cubic diamond nanowires. <i>Surface Science</i> , 2003 , 538, 204-210	1.8	21	
138	Understanding and Predicting the Cause of Defects in Graphene Oxide Nanostructures Using Machine Learning. <i>Journal of Physical Chemistry C</i> , 2020 , 124, 7404-7413	3.8	20	
137	High throughput theory and simulation of nanomaterials: exploring the stability and electronic properties of nanographene. <i>Journal of Materials Chemistry</i> , 2012 , 22, 18119		20	
136	Map of the Structural and Optical Properties of Gold Nanoparticles at Thermal Equilibrium. <i>Journal of Physical Chemistry C</i> , 2012 , 116, 14170-14175	3.8	20	
135	Modelling the shape and orientation of ZnO nanobelts. <i>Chemical Physics Letters</i> , 2006 , 419, 313-316	2.5	20	
134	From nanodiamond to diamond nanowires: structural properties affected by dimension. <i>Philosophical Magazine</i> , 2004 , 84, 899-907	1.6	20	
133	Ab initio modeling of B and N in C29 and C29H24 nanodiamond. <i>Journal of Chemical Physics</i> , 2003 , 118, 10725-10728	3.9	20	

132	Predicting the impact of structural diversity on the performance of nanodiamond drug carriers. <i>Nanoscale</i> , 2018 , 10, 8893-8910	7.7	19
131	Dynamic evolution of specific catalytic sites on Pt nanoparticles. <i>Catalysis Science and Technology</i> , 2016 , 6, 144-151	5.5	19
130	Selecting Appropriate Clustering Methods for Materials Science Applications of Machine Learning. <i>Advanced Theory and Simulations</i> , 2019 , 2, 1900145	3.5	19
129	Quantitative Structure-Property Relationship Modeling of Electronic Properties of Graphene Using Atomic Radial Distribution Function Scores. <i>Journal of Chemical Information and Modeling</i> , 2015 , 55, 250	06 <u>-</u> 6	19
128	Nanodiamond for hydrogen storage: temperature-dependent hydrogenation and charge-induced dehydrogenation. <i>Nanoscale</i> , 2012 , 4, 1130-7	7.7	19
127	Environmentally dependent stability of low-index hematite surfaces. <i>Journal of Colloid and Interface Science</i> , 2012 , 386, 315-24	9.3	19
126	Surface Area Limited Model for Predicting Anisotropic Coarsening of Faceted Nanoparticles. <i>Crystal Growth and Design</i> , 2011 , 11, 158-165	3.5	19
125	Vacancy Induced Structural Changes in Diamond Nanoparticles. <i>Journal of Computational and Theoretical Nanoscience</i> , 2008 , 5, 2089-2095	0.3	19
124	Artificial neural network analysis of the catalytic efficiency of platinum nanoparticles. <i>RSC Advances</i> , 2017 , 7, 48962-48971	3.7	18
123	Mapping the shape and phase of palladium nanocatalysts. Catalysis Science and Technology, 2012, 2, 14	85 .5	18
122	Modeling polydispersive ensembles of diamond nanoparticles. <i>Nanotechnology</i> , 2013 , 24, 085703	3.4	18
121	Surface Structure and Environment-Dependent Hydroxylation of the Nonpolar Hematite (100) from Density Functional Theory Modeling. <i>Journal of Physical Chemistry C</i> , 2011 , 115, 23023-23029	3.8	18
120	Shape dependence of the band gaps in luminescent silicon quantum dots. <i>Journal of Materials Chemistry C</i> , 2014 , 2, 9451-9456	7.1	17
119	Clarifying stability, probability and population in nanoparticle ensembles. <i>Nanoscale</i> , 2014 , 6, 9983-90	7.7	17
118	Size and shape dependent deprotonation potential and proton affinity of nanodiamond. <i>Nanotechnology</i> , 2014 , 25, 445702	3.4	16
117	Ripple induced changes in the wavefunction of graphene: an example of a fundamental symmetry breaking. <i>Nanoscale</i> , 2012 , 4, 1167-70	7.7	16
116	Thermodynamic stability and electronic structure of small carbon nitride nanotubes. <i>Journal of Physics Condensed Matter</i> , 2009 , 21, 144203	1.8	16
115	Morphological Stability of Pyrite FeS2 Nanocrystals in Water. <i>Journal of Physical Chemistry C</i> , 2009 , 113, 5376-5380	3.8	16

(2020-2019)

114	Visualising multi-dimensional structure/property relationships with machine learning. <i>JPhys Materials</i> , 2019 , 2, 034003	4.2	15	
113	Using structural diversity to tune the catalytic performance of Pt nanoparticle ensembles. <i>Catalysis Science and Technology</i> , 2015 , 5, 2848-2855	5.5	15	
112	Molecular ionization and deprotonation energies as indicators of functional coating performance. <i>Journal of Materials Chemistry A</i> , 2014 , 2, 16660-16668	13	15	
111	Shape, Orientation, and Stability of Twinned Gold Nanorods. <i>Journal of Physical Chemistry C</i> , 2008 , 112, 1385-1390	3.8	15	
110	Bucky-wires and the instability of diamond (111) surfaces in one-dimension. <i>Journal of Nanoscience and Nanotechnology</i> , 2004 , 4, 151-6	1.3	15	
109	The representative structure of graphene oxide nanoflakes from machine learning. <i>Nano Futures</i> , 2019 , 3, 045001	3.6	15	
108	Representing molecular and materials data for unsupervised machine learning. <i>Molecular Simulation</i> , 2018 , 44, 905-920	2	14	
107	The impact of size and shape distributions on the electron charge transfer properties of silver nanoparticles. <i>Nanoscale</i> , 2017 , 9, 12698-12708	7.7	14	
106	Relative Stability of Graphene Nanoflakes Under Environmentally Relevant Conditions. <i>Journal of Physical Chemistry C</i> , 2013 , 117, 15375-15382	3.8	14	
105	Predicting structure/property relationships in multi-dimensional nanoparticle data using t-distributed stochastic neighbour embedding and machine learning. <i>Nanoscale</i> , 2019 , 11, 23165-23172	7.7	14	
104	Materials science: nanoscale locomotion without fuel. <i>Nature</i> , 2015 , 519, 37-8	50.4	13	
103	Dynamic self-assembly of detonation nanodiamond in water. <i>Nanoscale</i> , 2020 , 12, 5363-5367	7.7	13	
102	Challenges in modelling nanoparticles for drug delivery. <i>Journal of Physics Condensed Matter</i> , 2016 , 28, 023002	1.8	13	
101	Modeling the Impact of Alkanethiol SAMs on the Morphology of Gold Nanocrystals. <i>Crystal Growth and Design</i> , 2013 , 13, 5433-5441	3.5	13	
100	Site-dependent stability and electronic structure of single vacancy point defects in hexagonal graphene nano-flakes. <i>Physical Chemistry Chemical Physics</i> , 2013 , 15, 4897-905	3.6	13	
99	Modelling of the reactivity and stability of carbon nanotubes under environmentally relevant conditions. <i>Physical Chemistry Chemical Physics</i> , 2012 , 14, 10080-93	3.6	13	
98	Useful equations for modeling the relative stability of common nanoparticle morphologies. <i>Computer Physics Communications</i> , 2011 , 182, 11-13	4.2	13	
97	Classification of platinum nanoparticle catalysts using machine learning. <i>Journal of Applied Physics</i> , 2020 , 128, 014301	2.5	13	

96	Thermodynamics of Hydrogen Adsorption and Incorporation at the ZnO(101 0) Surface. <i>Journal of Physical Chemistry C</i> , 2015 , 119, 26560-26565	3.8	12
95	Impact of distributions and mixtures on the charge transfer properties of graphene nanoflakes. <i>Nanoscale</i> , 2015 , 7, 1864-71	7.7	12
94	Stability of Porous Platinum Nanoparticles: Combined In Situ TEM and Theoretical Study. <i>Journal of Physical Chemistry Letters</i> , 2012 , 3, 1106-10	6.4	12
93	From Process to Properties: Correlating Synthesis Conditions and Structural Disorder of Platinum Nanocatalysts. <i>Journal of Physical Chemistry C</i> , 2018 , 122, 28085-28093	3.8	12
92	Towards developing multiscale-multiphysics models and their surrogates for digital twins of metal additive manufacturing. <i>Additive Manufacturing</i> , 2021 , 46, 102089	6.1	12
91	Efficient protocol for quantum Monte Carlo calculations of hydrogen abstraction barriers: Application to methanol. <i>International Journal of Quantum Chemistry</i> , 2017 , 117, e25361	2.1	11
90	Predictive Morphology Control of Hydrogen-Terminated Silicon Nanoparticles. <i>Journal of Physical Chemistry C</i> , 2014 , 118, 2580-2586	3.8	11
89	Tuning the Electron Transfer Properties of Entire Nanodiamond Ensembles. <i>Journal of Physical Chemistry C</i> , 2014 , 118, 30209-30215	3.8	11
88	Surface phase diagram of hematite pseudocubes in hydrous environments. <i>Journal of Materials Chemistry</i> , 2012 , 22, 161-167		11
87	Creation and luminescence of size-selected gold nanorods. <i>Nanoscale</i> , 2012 , 4, 5017-22	7.7	11
86	Mapping the structural and optical properties of anisotropic gold nanoparticles. <i>Journal of Materials Chemistry C</i> , 2013 , 1, 3150	7.1	11
85	Ponding and structure in PyNy panetuhos (y y = 1.2) Journal of Materials Chemistry 2007, 17, 2002		
	Bonding and structure in BxNy nanotubes (x,y = 1,2). <i>Journal of Materials Chemistry</i> , 2007 , 17, 2892		11
84	First-principles modeling of dopants in C29 and C29H24 nanodiamonds. <i>Journal of Physical Chemistry B</i> , 2005 , 109, 11991-5	3.4	11
84	First-principles modeling of dopants in C29 and C29H24 nanodiamonds. <i>Journal of Physical</i>	3.4	
	First-principles modeling of dopants in C29 and C29H24 nanodiamonds. <i>Journal of Physical Chemistry B</i> , 2005 , 109, 11991-5 Classifying and predicting the electron affinity of diamond nanoparticles using machine learning.		11
83	First-principles modeling of dopants in C29 and C29H24 nanodiamonds. <i>Journal of Physical Chemistry B</i> , 2005 , 109, 11991-5 Classifying and predicting the electron affinity of diamond nanoparticles using machine learning. <i>Nanoscale Horizons</i> , 2019 , 4, 983-990 Optical Emission of Statistical Distributions of Silicon Quantum Dots. <i>Journal of Physical Chemistry</i>	10.8	11
8 ₃	First-principles modeling of dopants in C29 and C29H24 nanodiamonds. <i>Journal of Physical Chemistry B</i> , 2005 , 109, 11991-5 Classifying and predicting the electron affinity of diamond nanoparticles using machine learning. <i>Nanoscale Horizons</i> , 2019 , 4, 983-990 Optical Emission of Statistical Distributions of Silicon Quantum Dots. <i>Journal of Physical Chemistry C</i> , 2015 , 119, 7969-7977	10.8	11 10 10

78	Mapping the photocatalytic activity or potential free radical toxicity of nanoscale titania. <i>Energy and Environmental Science</i> , 2011 , 4, 439-443	35.4	10
77	Ideality versus Reality: Emergence of the Chui Icosahedron. <i>Journal of Physical Chemistry C</i> , 2008 , 112, 14848-14852	3.8	10
76	Hybrid carbon nanotube/nanodiamond structures as electron emitters for cold cathodes. <i>Journal of Nanoscience and Nanotechnology</i> , 2008 , 8, 1989-93	1.3	10
75	Shape and Energetics of TiN Nanoparticles. <i>Journal of Computational and Theoretical Nanoscience</i> , 2004 , 1, 334-339	0.3	10
74	Impact of distributions on the archetypes and prototypes in heterogeneous nanoparticle ensembles. <i>Nanoscale</i> , 2017 , 9, 832-843	7.7	9
73	Optimal vacancy concentrations to maximize the NIV yield in nanodiamonds. <i>Materials Horizons</i> , 2014 , 1, 286	14.4	9
72	Ideality versus Reality: Predicting the Effect of Realistic Environments on the Electronic Properties of Nanographene. <i>Nanoscience and Nanotechnology Letters</i> , 2011 , 3, 59-62	0.8	9
71	Modeling corrosion inhibition efficacy of small organic molecules as non-toxic chromate alternatives using comparative molecular surface analysis (CoMSA). <i>Chemosphere</i> , 2016 , 160, 80-8	8.4	9
70	Predicting the role of seed morphology in the evolution of anisotropic nanocatalysts. <i>Nanoscale</i> , 2017 , 9, 1502-1510	7.7	8
69	Impact of distributions on the photocatalytic performance of anatase nanoparticle ensembles. <i>Journal of Materials Chemistry A</i> , 2015 , 3, 60-64	13	8
68	Phenol-Modified Silicene: Preferred Substitution Site and Electronic Properties. <i>Journal of Physical Chemistry C</i> , 2016 , 120, 6762-6770	3.8	8
67	Site-dependent atomic and molecular affinities of hydrocarbons, amines and thiols on diamond nanoparticles. <i>Nanoscale</i> , 2016 , 8, 7899-905	7.7	8
66	Technology: Sharing data in materials science. <i>Nature</i> , 2013 , 503, 463-4	50.4	8
65	Machine learning reveals multiple classes of diamond nanoparticles. <i>Nanoscale Horizons</i> , 2020 , 5, 1394-	139%	8
64	Impact of speciation on the electron charge transfer properties of nanodiamond drug carriers. <i>Nanoscale</i> , 2016 , 8, 14264-70	7.7	8
63	PorosityPlus: characterisation of defective, nanoporous and amorphous materials. <i>JPhys Materials</i> , 2018 , 1, 016002	4.2	8
62	Predicting archetypal nanoparticle shapes using a combination of thermodynamic theory and machine learning. <i>Nanoscale</i> , 2018 , 10, 21818-21826	7.7	8
61	On reverse Monte Carlo constraints and model reproduction. <i>Journal of Computational Chemistry</i> , 2017 , 38, 1547-1551	3.5	7

60	Heterogeneous PEGylation of diamond nanoparticles. <i>Nanoscale</i> , 2017 , 9, 70-74	7.7	7
59	Does Twinning Impact Structure/Property Relationships in Diamond Nanoparticles?. <i>Journal of Physical Chemistry C</i> , 2019 , 123, 11207-11215	3.8	7
58	Accurate prediction of binding energies for two-dimensional catalytic materials using machine learning. <i>ChemCatChem</i> , 2020 , 12, 5109-5120	5.2	7
57	Thermodynamic Control of Halogen-Terminated Silicon Nanoparticle Morphology. <i>Crystal Growth and Design</i> , 2014 , 14, 4468-4474	3.5	7
56	Diamond nanoparticles as a new platform for the sequestration of waste carbon. <i>Physical Chemistry Chemical Physics</i> , 2013 , 15, 9156-62	3.6	7
55	Modelling polar wurtzite ZnS nanoparticles: the effect of sulphur supersaturation on size- and shape-dependent phase transformations. <i>Journal of Materials Chemistry</i> , 2012 , 22, 18992		7
54	Proton transfer in the hydrogen-bonded chains of lepidocrocite: a computational study. <i>Physical Chemistry Chemical Physics</i> , 2011 , 13, 17864-9	3.6	7
53	A comparative density functional theory investigation of the mechanical and energetic properties of ZnS. <i>Molecular Simulation</i> , 2011 , 37, 321-333	2	7
52	Ab initio modelling of boron and nitrogen in diamond nanowires. <i>Philosophical Magazine</i> , 2003 , 83, 230	1 <u>1</u> 2609	9 7
51	The pure and representative types of disordered platinum nanoparticles from machine learning. <i>Nanotechnology</i> , 2021 , 32, 095404	3.4	7
50	Catalytic potential of highly defective (211) surfaces of zinc blende ZnO. <i>Physical Chemistry Chemical Physics</i> , 2015 , 17, 27683-9	3.6	6
49	Best Practice Leads to the Best Materials Informatics. <i>Matter</i> , 2020 , 3, 22-23	12.7	6
48	Bias-Free Chemically Diverse Test Sets from Machine Learning. ACS Combinatorial Science, 2017, 19, 544	1- <u>5</u> 54	6
47	Modelling nanoscale cubic ZnS morphology and thermodynamic stability under sulphur-rich conditions. <i>CrystEngComm</i> , 2012 , 14, 7749	3.3	6
46	Modeling the environmental stability of FeS2 nanorods, using lessons from biomineralization. <i>Nanotechnology</i> , 2009 , 20, 115702	3.4	6
45	Characterization of cathodic arc deposited titanium aluminium nitride films prepared using plasma immersion ion implantation. <i>Journal of Physics Condensed Matter</i> , 2005 , 17, 2791-2800	1.8	6
44	Stability of Nanodiamond 2006 , 117-154		6
43	Carbon Family at the Nanoscale 2006 , 3-22		6

(2017-2021)

42	The data-intensive scientific revolution occurring where two-dimensional materials meet machine learning. <i>Cell Reports Physical Science</i> , 2021 , 2, 100482	6.1	6
41	Simulating nano-carbon materials. <i>Molecular Simulation</i> , 2005 , 31, 495-504	2	5
40	A Monte Carlo Study of Surface Reconstruction in (100) and (111) Diamond Surfaces and Nanodiamond. <i>Molecular Simulation</i> , 2004 , 30, 1-8	2	5
39	Simulation and bonding of dopants in nanocrystalline diamond. <i>Journal of Nanoscience and Nanotechnology</i> , 2005 , 5, 1395-407	1.3	5
38	Nearest neighbour considerations in Stillinger-Weber type potentials for diamond. <i>Molecular Simulation</i> , 2002 , 28, 761-771	2	5
37	Vacancy induced formation of nanoporous silicon, carbon and silicon carbide. <i>Physical Chemistry Chemical Physics</i> , 2019 , 21, 6517-6524	3.6	5
36	Correlating anisotropy and disorder with the surface structure of platinum nanoparticles. <i>Nanoscale</i> , 2018 , 10, 20393-20404	7.7	5
35	Charge-induced restructuring and decomposition of bucky-diamonds. <i>Journal of Materials Chemistry</i> , 2012 , 22, 13141		4
34	Ab initio modelling of dopants in diamond nanowires: Ii. <i>Philosophical Magazine</i> , 2003 , 83, 2311-2321	1.6	4
33	Water bilayers on ZnO(100) surfaces: data-driven structural search. <i>RSC Advances</i> , 2016 , 6, 30928-3093	6 3.7	4
32	Tunable charge transfer on selectively functionalised diamond nanoparticles. <i>Diamond and Related Materials</i> , 2016 , 68, 78-83	3.5	4
31	Fast derivation of Shapley based feature importances through feature extraction methods for nanoinformatics. <i>Machine Learning: Science and Technology</i> , 2021 , 2, 035034	5.1	4
30	Texture based image classification for nanoparticle surface characterisation and machine learning. <i>JPhys Materials</i> , 2018 , 1, 016001	4.2	3
29	Interfacial informatics. <i>JPhys Materials</i> , 2021 , 4, 041001	4.2	3
28	Identifying hidden high-dimensional structure/property relationships using self-organizing maps. <i>MRS Communications</i> , 2019 , 9, 730-736	2.7	2
27	Simulated nanoparticle assembly using protoparticles (SNAP). JPhys Materials, 2020 , 3, 026001	4.2	2
26	Feature Engineering of Solid-State Crystalline Lattices for Machine Learning. <i>Advanced Theory and Simulations</i> , 2020 , 3, 1900190	3.5	2
25	Atomic and Electronic Structures of Functionalized Nanodiamond Particles. <i>Microscopy and Microanalysis</i> , 2017 , 23, 2270-2271	0.5	2

24	Design of Nanodiamond Based Drug Delivery Patch for Cancer Therapeutics and Imaging Applications 2010 , 249-284		2
23	Modelling the relative stability of carbon nanotubes exposed to environmental adsorbates and air. <i>Journal of Physics Condensed Matter</i> , 2009 , 21, 144205	1.8	2
22	Partnerships for sustainable nanotechnology. <i>Materials Today</i> , 2009 , 12, 47	21.8	2
21	Thermodynamic Modeling of Hydrogen Adsorption on Carbon Nanotubes During CVD Growth. <i>Chemical Vapor Deposition</i> , 2006 , 12, 388-394		2
20	Simulating facet-dependent aggregation and assembly of distributions of polyhedral nanoparticles. <i>Nanoscale</i> , 2020 , 12, 19870-19879	7.7	2
19	Using hypothetical product configurators to measure consumer preferences for nanoparticle size and concentration in sunscreens. <i>Design Science</i> , 2016 , 2,	2.8	2
18	Impact of atomistic or crystallographic descriptors for classification of gold nanoparticles. <i>Nanoscale</i> , 2021 , 13, 11887-11898	7.7	2
17	Unsupervised structure classes vs. supervised property classes of silicon quantum dots using neural networks. <i>Nanoscale Horizons</i> , 2021 , 6, 277-282	10.8	2
16	Inverse Design of Nanoparticles Using Multi-Target Machine Learning. <i>Advanced Theory and Simulations</i> , 2022 , 5, 2100414	3.5	2
15	High-throughput simulation of the configuration and ionisation potential of nitrogen-doped graphene. <i>Molecular Simulation</i> , 2016 , 42, 458-462	2	1
14	Surface and Point Defect Measurements of Detonation Nanodiamond using Combined Cs-Cc corrected TEM and ab initio Calculations. <i>Microscopy and Microanalysis</i> , 2016 , 22, 1392-1393	0.5	1
13	Modeling Nanomorphology in Noble Metal Particles: Thermodynamic Cartography 2012 , 269-303		1
12	Stability of Diamond at the Nanoscale 2012 , 3-52		1
11	Hydrogen Stabilization of {111} Nanodiamond. <i>Materials Research Society Symposia Proceedings</i> , 2002 , 740, 1		1
10	Explainable prediction of N-V-related defects in nanodiamond using neural networks and Shapley values. <i>Cell Reports Physical Science</i> , 2022 , 3, 100696	6.1	1
9	Data-driven causal inference of process-structure relationships in nanocatalysis. <i>Current Opinion in Chemical Engineering</i> , 2022 , 36, 100818	5.4	1
8	Thermodynamics of Iron Oxides and Oxyhydroxides in Different Environments 2016 , 269-292		0
7	Simulating Facet-Dependent Aggregation and Assembly of Mixtures of Polyhedral Nanoparticles. <i>Advanced Theory and Simulations</i> ,2100279	3.5	O

LIST OF PUBLICATIONS

6	Charge-dependent Fermi level of graphene oxide nanoflakes from machine learning. <i>Computational Materials Science</i> , 2022 , 211, 111526	,	0
5	Safety-by-design using forward and inverse multi-target machine learning. <i>Chemosphere</i> , 2022 , 303, 135 % 3	3	o
4	Optimization-Free Inverse Design of[High-Dimensional Nanoparticle Electrocatalysts Using Multi-target Machine Learning. <i>Lecture Notes in Computer Science</i> , 2022 , 307-318)	0
3	Aggregation Behavior of Detonation Nanodiamond in Solution. <i>Microscopy and Microanalysis</i> , 2019 , 25, 1740-1741	;	
2	Molecular and Analytical Modeling of Nanodiamond for Drug Delivery Applications 2015 , 169-195		
1	Predicting the Probability of Observation of Arbitrary Graphene Oxide Nanoflakes Using Artificial Neural Networks. <i>Advanced Theory and Simulations</i> ,2200013		