Jonathan P Anderson

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4685713/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Foliar resistance to Rhizoctonia solani in Arabidopsis is compromised by simultaneous loss of ethylene, jasmonate and PEN2 mediated defense pathways. Scientific Reports, 2021, 11, 2546.	3.3	9
2	Transcriptome analysis reveals class IX ethylene response factors show specific up-regulation in resistant but not susceptible Medicago truncatula lines following infection with Rhizoctonia solani. European Journal of Plant Pathology, 2018, 152, 549-554.	1.7	5
3	Ethylene Signaling Is Important for Isoflavonoid-Mediated Resistance to <i>Rhizoctonia solani</i> in Roots of <i>Medicago truncatula</i> . Molecular Plant-Microbe Interactions, 2017, 30, 691-700.	2.6	40
4	Comparative secretome analysis of Rhizoctonia solani isolates with different host ranges reveals unique secretomes and cell death inducing effectors. Scientific Reports, 2017, 7, 10410.	3.3	62
5	Belowground Defence Strategies Against Rhizoctonia. Signaling and Communication in Plants, 2016, , 99-117.	0.7	0
6	Mass-spectrometry data for Rhizoctonia solani proteins produced during infection of wheat and vegetative growth. Data in Brief, 2016, 8, 267-271.	1.0	5
7	Comparative genomics and prediction of conditionally dispensable sequences in legume–infecting Fusarium oxysporum formae speciales facilitates identification of candidate effectors. BMC Genomics, 2016, 17, 191.	2.8	109
8	Proteomic Analysis of Rhizoctonia solani Identifies Infection-specific, Redox Associated Proteins and Insight into Adaptation to Different Plant Hosts. Molecular and Cellular Proteomics, 2016, 15, 1188-1203.	3.8	37
9	Reactive Oxygen Species Play a Role in the Infection of the Necrotrophic Fungi, Rhizoctonia solani in Wheat. PLoS ONE, 2016, 11, e0152548.	2.5	77
10	Genome Sequencing and Comparative Genomics of the Broad Host-Range Pathogen Rhizoctonia solani AG8. PLoS Genetics, 2014, 10, e1004281.	3.5	145
11	Defence Signalling Pathways Involved in Plant Resistance and Phosphite-Mediated Control of Phytophthora Cinnamomi. Plant Molecular Biology Reporter, 2014, 32, 342-356.	1.8	33
12	Suppression of the auxin response pathway enhances susceptibility to Phytophthora cinnamomi while phosphite-mediated resistance stimulates the auxin signalling pathway. BMC Plant Biology, 2014, 14, 68.	3.6	41
13	<i>Medicago truncatula</i> as a model host for studying legume infecting <i><scp>R</scp>hizoctonia solani</i> and identification of a locus affecting resistance to root canker. Plant Pathology, 2013, 62, 908-921.	2.4	22
14	Plant–aphid interactions with a focus on legumes. Functional Plant Biology, 2013, 40, 1271.	2.1	40
15	Genetic and Genomic Analysis of Rhizoctonia solani Interactions with Arabidopsis; Evidence of Resistance Mediated through NADPH Oxidases. PLoS ONE, 2013, 8, e56814.	2.5	56
16	Phosphite primed defence responses and enhanced expression of defence genes in <i>Arabidopsis thaliana</i> infected with <i>Phytophthora cinnamomi</i> . Plant Pathology, 2011, 60, 1086-1095.	2.4	124
17	A quantitative PCR assay for accurate in planta quantification of the necrotrophic pathogen Phytophthora cinnamomi. European Journal of Plant Pathology, 2011, 131, 419-430.	1.7	25
18	Interactions of Arabidopsis andM. truncatulawith the same pathogens differ in dependence on ethylene and ethylene response factors. Plant Signaling and Behavior, 2011, 6, 551-552.	2.4	17

#	Article	IF	CITATIONS
19	The B-3 Ethylene Response Factor MtERF1-1 Mediates Resistance to a Subset of Root Pathogens in <i>Medicago truncatula</i> without Adversely Affecting Symbiosis with Rhizobia Â. Plant Physiology, 2010, 154, 861-873.	4.8	72
20	Plants versus pathogens: an evolutionary arms race. Functional Plant Biology, 2010, 37, 499.	2.1	156
21	The <i>Medicago truncatula</i> ortholog of Arabidopsis EIN2, <i>sickle</i> , is a negative regulator of symbiotic and pathogenic microbial associations. Plant Journal, 2008, 55, 580-595.	5.7	272
22	Characterization of Pea Aphid Resistance in <i>Medicago truncatula</i> Â Â Â. Plant Physiology, 2008, 146, 996-1009.	4.8	87
23	AtERF14, a Member of the ERF Family of Transcription Factors, Plays a Nonredundant Role in Plant Defense. Plant Physiology, 2007, 143, 400-409.	4.8	188
24	Involvement of the Octadecanoid Pathway in Bluegreen Aphid Resistance in Medicago truncatula. Molecular Plant-Microbe Interactions, 2007, 20, 82-93.	2.6	141
25	Plant defence responses: what have we learnt from Arabidopsis?. Functional Plant Biology, 2005, 32, 1.	2.1	136
26	Plant defence responses: conservation between models and crops. Functional Plant Biology, 2005, 32, 21.	2.1	39
27	Antagonistic Interaction between Abscisic Acid and Jasmonate-Ethylene Signaling Pathways Modulates Defense Gene Expression and Disease Resistance in Arabidopsis. Plant Cell, 2004, 16, 3460-3479.	6.6	1,017
28	Pathogen-Responsive Expression of a Putative ATP-Binding Cassette Transporter Gene Conferring Resistance to the Diterpenoid Sclareol Is Regulated by Multiple Defense Signaling Pathways in Arabidopsis. Plant Physiology, 2003, 133, 1272-1284.	4.8	194
29	Systemic Gene Expression in Arabidopsis during an Incompatible Interaction with Alternaria brassicicola Â. Plant Physiology, 2003, 132, 999-1010.	4.8	160
30	Coordinated plant defense responses in Arabidopsis revealed by microarray analysis. Proceedings of the National Academy of Sciences of the United States of America, 2000, 97, 11655-11660.	7.1	1,293
31	Ethylene response factors and their role in plant defence CAB Reviews: Perspectives in Agriculture, Veterinary Science, Nutrition and Natural Resources, 0, , 1-12.	1.0	3