
Xiaolin Xie

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/46857/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Poly(ethylene oxide)-based electrolytes for lithium-ion batteries. Journal of Materials Chemistry A, 2015, 3, 19218-19253.	10.3	1,566
2	Multifunctional Magnetic Ti ₃ C ₂ T _{<i>x</i>} MXene/Graphene Aerogel with Superior Electromagnetic Wave Absorption Performance. ACS Nano, 2021, 15, 6622-6632.	14.6	503
3	Improving thermal conductivity while retaining high electrical resistivity of epoxy composites by incorporating silica-coated multi-walled carbon nanotubes. Carbon, 2011, 49, 495-500.	10.3	262
4	Reducing the thickness of solid-state electrolyte membranes for high-energy lithium batteries. Energy and Environmental Science, 2021, 14, 12-36.	30.8	236
5	Superior flame retardancy and smoke suppression of epoxy-based composites with phosphorus/nitrogen co-doped graphene. Journal of Hazardous Materials, 2018, 346, 140-151.	12.4	173
6	Advanced carbon materials/olivine LiFePO 4 composites cathode for lithium ion batteries. Journal of Power Sources, 2016, 318, 93-112.	7.8	171
7	Ultralight Layerâ€by‣ayer Selfâ€Assembled MoS ₂ â€Polymer Modified Separator for Simultaneously Trapping Polysulfides and Suppressing Lithium Dendrites. Advanced Energy Materials, 2018, 8, 1802430.	19.5	170
8	Improving thermal and flame retardant properties of epoxy resin by functionalized graphene containing phosphorous, nitrogen and silicon elements. Composites Part A: Applied Science and Manufacturing, 2017, 103, 74-83.	7.6	158
9	A flexible, self-healing and highly stretchable polymer electrolyte <i>via</i> quadruple hydrogen bonding for lithium-ion batteries. Journal of Materials Chemistry A, 2018, 6, 11725-11733.	10.3	155
10	Simultaneous improvement in the flame resistance and thermal conductivity of epoxy/Al ₂ O ₃ composites by incorporating polymeric flame retardant-functionalized graphene. Journal of Materials Chemistry A, 2017, 5, 13544-13556.	10.3	148
11	High-performance epoxy/silica coated silver nanowire composites as underfill material for electronic packaging. Composites Science and Technology, 2014, 105, 80-85.	7.8	146
12	Synergetic Improvement in Thermal Conductivity and Flame Retardancy of Epoxy/Silver Nanowires Composites by Incorporating "Branch-Like―Flame-Retardant Functionalized Graphene. ACS Applied Materials & Interfaces, 2018, 10, 21628-21641.	8.0	142
13	Highly flame-retardant epoxy-based thermal conductive composites with functionalized boron nitride nanosheets exfoliated by one-step ball milling. Chemical Engineering Journal, 2021, 407, 127099.	12.7	131
14	Self-Healing Solid Polymer Electrolyte Facilitated by a Dynamic Cross-Linked Polymer Matrix for Lithium-Ion Batteries. Macromolecules, 2020, 53, 1024-1032.	4.8	125
15	Highly thermally conductive flame retardant epoxy nanocomposites with multifunctional ionic liquid flame retardant-functionalized boron nitride nanosheets. Journal of Materials Chemistry A, 2018, 6, 20500-20512.	10.3	123
16	Multiple synergistic effects of graphene-based hybrid and hexagonal born nitride in enhancing thermal conductivity and flame retardancy of epoxy. Chemical Engineering Journal, 2020, 379, 122402.	12.7	120
17	Monochromatic Visible Light "Photoinitibitor†Janus-Faced Initiation and Inhibition for Storage of Colored 3D Images. Journal of the American Chemical Society, 2014, 136, 8855-8858.	13.7	118
18	Iron-catalyzed atom transfer radical polymerization. Polymer Chemistry, 2015, 6, 1660-1687.	3.9	105

#	Article	IF	CITATIONS
19	Self-healing composite polymer electrolyte formed <i>via</i> supramolecular networks for high-performance lithium-ion batteries. Journal of Materials Chemistry A, 2019, 7, 10354-10362.	10.3	104
20	Bioinspired Ternary Artificial Nacre Nanocomposites Based on Reduced Graphene Oxide and Nanofibrillar Cellulose. ACS Applied Materials & Interfaces, 2016, 8, 10545-10550.	8.0	102
21	Responsive Block Copolymer Photonic Microspheres. Advanced Materials, 2018, 30, e1707344.	21.0	102
22	Poly(ethylene oxide)-based composite polymer electrolytes embedding with ionic bond modified nanoparticles for all-solid-state lithium-ion battery. Journal of Membrane Science, 2019, 575, 200-208.	8.2	102
23	Construction of Supramolecular Liquid-Crystalline Metallacycles for Holographic Storage of Colored Images. Journal of the American Chemical Society, 2020, 142, 6285-6294.	13.7	99
24	Structure, rheological, thermal conductive and electrical insulating properties of high-performance hybrid epoxy/nanosilica/AgNWs nanocomposites. Composites Science and Technology, 2016, 128, 207-214.	7.8	95
25	Polycationic Polymer Layer for Air‣table and Dendriteâ€Free Li Metal Anodes in Carbonate Electrolytes. Advanced Materials, 2021, 33, e2007428.	21.0	94
26	Fast electrochemical kinetics and strong polysulfide adsorption by a highly oriented MoS ₂ nanosheet@N-doped carbon interlayer for lithium–sulfur batteries. Journal of Materials Chemistry A, 2019, 7, 7897-7906.	10.3	93
27	Enhancing thermal oxidation and fire resistance of reduced graphene oxide by phosphorus and nitrogen co-doping: Mechanism and kinetic analysis. Carbon, 2019, 146, 650-659.	10.3	90
28	Flexible Organic–Inorganic Hybrid Solid Electrolytes Formed via Thiol–Acrylate Photopolymerization. Macromolecules, 2017, 50, 1970-1980.	4.8	89
29	Multiwalled Carbon Nanotubes Functionalized by Hyperbranched Poly(urea-urethane)s by a One-Pot Polycondensation. Macromolecular Rapid Communications, 2006, 27, 1695-1701.	3.9	87
30	High Performance Graded Rainbow Holograms via Two-Stage Sequential Orthogonal Thiol–Click Chemistry. Macromolecules, 2014, 47, 2306-2315.	4.8	81
31	Flexible, Self-Healing, and Fire-Resistant Polymer Electrolytes Fabricated via Photopolymerization for All-Solid-State Lithium Metal Batteries. ACS Macro Letters, 2020, 9, 525-532.	4.8	81
32	A Centimeterâ€Scale Inorganic Nanoparticle Superlattice Monolayer with Nonâ€Closeâ€Packing and its High Performance in Memory Devices. Advanced Materials, 2018, 30, e1800595.	21.0	80
33	A facile method to fabricate silica-coated carbon nanotubes and silica nanotubes from carbon nanotubes templates. Journal of Materials Science, 2009, 44, 4539-4545.	3.7	79
34	Progress in Imidazolium Ionic Liquids Assisted Fabrication of Carbon Nanotube and Graphene Polymer Composites. Polymers, 2013, 5, 847-872.	4.5	78
35	PEO-based electrolytes blended with star polymers with precisely imprinted polymeric pseudo-crown ether cavities for alkali metal ion batteries. Journal of Membrane Science, 2019, 576, 182-189.	8.2	78
36	A Oneâ€Step Route to CO ₂ â€Based Block Copolymers by Simultaneous ROCOP of CO ₂ /Epoxides and RAFT Polymerization of Vinyl Monomers. Angewandte Chemie - International Edition, 2018, 57, 3593-3597.	13.8	77

#	Article	IF	CITATIONS
37	Soft Colloidal Molecules with Tunable Geometry by 3D Confined Assembly of Block Copolymers. Macromolecules, 2015, 48, 5855-5860.	4.8	75
38	Selfâ€Healing Polymer Electrolytes Formed via Dualâ€Networks: A New Strategy for Flexible Lithium Metal Batteries. Chemistry - A European Journal, 2018, 24, 19200-19207.	3.3	75
39	Molecular Brush with Dense PEG Side Chains: Design of a Well-Defined Polymer Electrolyte for Lithium-Ion Batteries. Macromolecules, 2019, 52, 7234-7243.	4.8	72
40	Synthesis and self-assembly of polystyrene-grafted multiwalled carbon nanotubes with a hairy-rod nanostructure. Journal of Polymer Science Part A, 2006, 44, 3869-3881.	2.3	71
41	Photoinitiation and Inhibition under Monochromatic Green Light for Storage of Colored 3D Images in Holographic Polymer-Dispersed Liquid Crystals. ACS Applied Materials & Interfaces, 2017, 9, 1810-1819.	8.0	69
42	PANI–PEG copolymer modified LiFePO ₄ as a cathode material for high-performance lithium ion batteries. Journal of Materials Chemistry A, 2014, 2, 19315-19323.	10.3	68
43	Electric-Field-Assisted Assembly of Polymer-Tethered Gold Nanorods in Cylindrical Nanopores. ACS Nano, 2016, 10, 4954-4960.	14.6	61
44	Advances on Thermally Conductive Epoxyâ€Based Composites as Electronic Packaging Underfill Materials—A Review. Advanced Materials, 2022, 34, e2201023.	21.0	61
45	Block Copolymer Capsules with Structureâ€Dependent Release Behavior. Angewandte Chemie - International Edition, 2016, 55, 14633-14637.	13.8	60
46	A polysulfone-based anion exchange membrane for phosphoric acid concentration and purification by electro-electrodialysis. Journal of Membrane Science, 2018, 552, 86-94.	8.2	60
47	SiO ₂ @MoS ₂ core–shell nanocomposite layers with high lithium ion diffusion as a triple polysulfide shield for high performance lithium–sulfur batteries. Journal of Materials Chemistry A, 2019, 7, 7644-7653.	10.3	60
48	3D Image Storage in Photopolymer/ZnS Nanocomposites Tailored by "Photoinitibitor― Macromolecules, 2015, 48, 2958-2966.	4.8	59
49	Comb-like solid polymer electrolyte based on polyethylene glycol-grafted sulfonated polyether ether ketone. Electrochimica Acta, 2017, 255, 396-404.	5.2	59
50	One-Step and Metal-Free Synthesis of Triblock Quaterpolymers by Concurrent and Switchable Polymerization. ACS Macro Letters, 2020, 9, 204-209.	4.8	59
51	Facile Image Patterning via Sequential Thiol–Michael/Thiol–Yne Click Reactions. Chemistry of Materials, 2014, 26, 6819-6826.	6.7	57
52	Crosstalkâ€Free Patterning of Cooperativeâ€Thermoresponse Images by the Synergy of the AIEgen with the Liquid Crystal. Angewandte Chemie - International Edition, 2020, 59, 10066-10072.	13.8	56
53	Controlled Synthesis and Novel Solution Rheology of Hyperbranched Poly(ureaâ~urethane)-Functionalized Multiwalled Carbon Nanotubes. Macromolecules, 2007, 40, 5858-5867.	4.8	55
54	Surface Roughness Modulates Diffusion and Fibrillation of Amyloid-β Peptide. Langmuir, 2016, 32, 8238-8244.	3.5	53

#	Article	IF	CITATIONS
55	Additives Induced Structural Transformation of ABC Triblock Copolymer Particles. Langmuir, 2015, 31, 10975-10982.	3.5	51
56	Recent advances in covalent functionalization of carbon nanomaterials with polymers: Strategies and perspectives. Journal of Polymer Science Part A, 2017, 55, 622-631.	2.3	49
57	Cyclophosphazene-based hybrid polymer electrolytes obtained <i>via</i> epoxy–amine reaction for high-performance all-solid-state lithium-ion batteries. Journal of Materials Chemistry A, 2019, 7, 18871-18879.	10.3	48
58	Development of Direct-Laser-Printable Light-Powered Nanocomposites. ACS Applied Materials & Interfaces, 2019, 11, 19541-19553.	8.0	48
59	Lewis pair catalyzed highly selective polymerization for the one-step synthesis of A _z C _y (AB) _x C _y A _z pentablock terpolymers. Polymer Chemistry, 2020, 11, 1691-1695.	3.9	44
60	Lithium Salt-Induced <i>In Situ</i> Living Radical Polymerizations Enable Polymer Electrolytes for Lithium-Ion Batteries. Macromolecules, 2021, 54, 874-887.	4.8	44
61	Robust multi-responsive supramolecular hydrogel based on a mono-component host–guest gelator. Soft Matter, 2018, 14, 5213-5221.	2.7	43
62	Ultralow-Carbon Nanotube-Toughened Epoxy: The Critical Role of a Double-Layer Interface. ACS Applied Materials & Interfaces, 2018, 10, 1204-1216.	8.0	42
63	Oxygenâ€Triggered Switchable Polymerization for the Oneâ€Pot Synthesis of CO ₂ â€Based Block Copolymers from Monomer Mixtures. Angewandte Chemie - International Edition, 2019, 58, 14311-14318.	13.8	41
64	Poly(Îμ-caprolactone)-block-poly(ethylene glycol)-block-poly(Îμ-caprolactone)-based hybrid polymer electrolyte for lithium metal batteries. Journal of Membrane Science, 2020, 607, 118132.	8.2	41
65	Efficient 3D printing via photooxidation of ketocoumarin based photopolymerization. Nature Communications, 2021, 12, 2873.	12.8	41
66	Deep eutectic solvents for green and efficient iron-mediated ligand-free atom transfer radical polymerization. Polymer Chemistry, 2017, 8, 1616-1627.	3.9	40
67	Immobilization of RAFT agents on silica nanoparticles utilizing an alternative functional group and subsequent surfaceâ€initiated RAFT polymerization. Journal of Polymer Science Part A, 2009, 47, 467-484.	2.3	39
68	Structural Transformation of Diblock Copolymer/Homopolymer Assemblies by Tuning Cylindrical Confinement and Interfacial Interactions. Langmuir, 2015, 31, 12354-12361.	3.5	39
69	Air-stable means more: designing air-defendable lithium metals for safe and stable batteries. Materials Horizons, 2020, 7, 2619-2634.	12.2	37
70	High modulus and low-voltage driving nematic liquid-crystalline physical gels for light-scattering displays. Soft Matter, 2013, 9, 7718.	2.7	35
71	Wholly Visible-Light-Responsive Host–Guest Supramolecular Gels Based on Methoxy Azobenzene and β-Cyclodextrin Dimers. Langmuir, 2020, 36, 7408-7417.	3.5	34
72	Highly thermally conductive yet mechanically robust composites with nacre-mimetic structure prepared by evaporation-induced self-assembly approach. Chemical Engineering Journal, 2021, 405, 126865.	12.7	34

#	Article	IF	CITATIONS
73	Judicious selection of bifunctional molecules to chemically modify graphene for improving nanomechanical and thermal properties of polymer composites. Journal of Materials Chemistry A, 2014, 2, 20038-20047.	10.3	33
74	Antioxidant Activity of Chinese Shanxi Aged Vinegar and Its Correlation with Polyphenols and Flavonoids During the Brewing Process. Journal of Food Science, 2017, 82, 2479-2486.	3.1	33
75	Noncovalent engineering of carbon nanotube surface by imidazolium ionic liquids: A promising strategy for enhancing thermal conductivity of epoxy composites. Composites Part A: Applied Science and Manufacturing, 2019, 125, 105517.	7.6	33
76	Scalable Approach to Construct Self-Assembled Graphene-Based Films with An Ordered Structure for Thermal Management. ACS Applied Materials & Interfaces, 2018, 10, 41690-41698.	8.0	32
77	Porous polymer electrolyte based on poly(vinylidene fluoride)/comb-liked polystyrene via ionic band functionalization. Journal of Membrane Science, 2018, 564, 663-671.	8.2	32
78	Composite Lithium Metal Anodes with Lithiophilic and Lowâ€Tortuosity Scaffold Enabling Ultrahigh Currents and Capacities in Carbonate Electrolytes. Advanced Functional Materials, 2021, 31, 2009961.	14.9	32
79	Classical photopolymerization kinetics, exceptional gelation, and improved diffraction efficiency and driving voltage in scaffolding morphological H-PDLCs afforded using a photoinitibitor. Polymer Chemistry, 2015, 6, 8259-8269.	3.9	31
80	The generation of polymeric nano-bowls through 3D confined assembly and disassembly. Soft Matter, 2016, 12, 3683-3687.	2.7	31
81	Synthesis, thermal stability and photoresponsive behaviors of azobenzene-tethered polyhedral oligomeric silsesquioxanes. New Journal of Chemistry, 2011, 35, 2781.	2.8	30
82	UV-curable boron nitride nanosheet/ionic liquid-based crosslinked composite polymer electrolyte in lithium metal batteries. Journal of Power Sources, 2019, 414, 283-292.	7.8	30
83	Effects of selective distribution of alumina micro-particles on rheological, mechanical and thermal conductive properties of asphalt/SBS/alumina composites. Composites Science and Technology, 2020, 186, 107917.	7.8	30
84	Photomechanically Controlled Encapsulation and Release from pH-Responsive and Photoresponsive Microcapsules. Langmuir, 2015, 31, 5456-5463.	3.5	29
85	Dual-Functional Interlayer Based on Radially Oriented Ultrathin MoS ₂ Nanosheets for High-Performance Lithium–Sulfur Batteries. ACS Applied Energy Materials, 2019, 2, 1702-1711.	5.1	29
86	Iron-mediated AGET ATRP of methyl methacrylate in the presence of polar solvents as ligands. Journal of Polymer Science Part A, 2014, 52, 1020-1027.	2.3	28
87	Self-Assembly of Shaped Nanoparticles into Free-Standing 2D and 3D Superlattices. Small, 2016, 12, 499-505.	10.0	28
88	Well-structured holographic polymer dispersed liquid crystals by employing acrylamide and doping ZnS nanoparticles. Materials Chemistry Frontiers, 2017, 1, 294-303.	5.9	28
89	Insight into glass transition of cellulose based on direct thermal processing after plasticization by ionic liquid. Cellulose, 2015, 22, 89-99.	4.9	27
90	Reversible photo-responsive gel–sol transitions of robust organogels based on an azobenzene-containing main-chain liquid crystalline polymer. RSC Advances, 2020, 10, 3726-3733.	3.6	27

#	Article	IF	CITATIONS
91	Orthogonal Reconstruction of Upconversion and Holographic Images for Anticounterfeiting Based on Energy Transfer. ACS Applied Materials & amp; Interfaces, 2021, 13, 19159-19167.	8.0	27
92	Solid polymer electrolyte based on ionic bond or covalent bond functionalized silica nanoparticles. RSC Advances, 2017, 7, 54986-54994.	3.6	26
93	Interfacial AIE for Orthogonal Integration of Holographic and Fluorescent Dualâ€Thermosensitive Images. Advanced Science, 2022, 9, e2105903.	11.2	26
94	Robust polyazobenzene microcapsules with photoresponsive pore channels and tunable release profiles. European Polymer Journal, 2012, 48, 41-48.	5.4	25
95	Iron-catalyzed AGET ATRP of methyl methacrylate using an alcohol as a reducing agent in a polar solvent. Dalton Transactions, 2014, 43, 16528-16533.	3.3	25
96	Grafting Polytetrafluoroethylene Micropowder via in Situ Electron Beam Irradiation-Induced Polymerization. Polymers, 2018, 10, 503.	4.5	25
97	Liquid Crystalline Nanocolloids for the Storage of Electro-Optic Responsive Images. ACS Applied Materials & Interfaces, 2019, 11, 8612-8624.	8.0	25
98	Visible light-triggered gel-to-sol transition in halogen-bond-based supramolecules. Soft Matter, 2019, 15, 6411-6417.	2.7	24
99	Highly Luminescent Liquid Crystals in Aggregation Based on Platinum(II) Complexes. ACS Applied Materials & Interfaces, 2020, 12, 53058-53066.	8.0	23
100	Cobaltâ€Mediated Switchable Catalysis for the Oneâ€Pot Synthesis of Cyclic Polymers. Angewandte Chemie - International Edition, 2021, 60, 16974-16979.	13.8	23
101	Highly diffractive, reversibly fast responsive gratings formulated through holography. RSC Advances, 2014, 4, 4420-4426.	3.6	22
102	The enhanced actuation response of an ionic polymer–metal composite actuator based on sulfonated polyphenylsulfone. Polymer Chemistry, 2014, 5, 6097-6107.	3.9	22
103	Photo-switch and INHIBIT logic gate based on two pyrazolone thiosemicarbazone derivatives. New Journal of Chemistry, 2009, 33, 2232.	2.8	21
104	Precisely Tuning Helical Twisting Power via Photoisomerization Kinetics of Dopants in Chiral Nematic Liquid Crystals. Langmuir, 2018, 34, 700-708.	3.5	21
105	Bromoalkyl ATRP initiator activation by inorganic salts: experiments and computations. Polymer Chemistry, 2019, 10, 2376-2386.	3.9	21
106	Switchable Polymerization Triggered by Fast and Quantitative Insertion of Carbon Monoxide into Cobalt–Oxygen Bonds. Angewandte Chemie - International Edition, 2020, 59, 5988-5994.	13.8	21
107	Development of ionic liquid-based electroactive polymer composites using nanotechnology. Nanotechnology Reviews, 2021, 10, 99-116.	5.8	21
108	Comb-shaped anion exchange membrane to enhance phosphoric acid purification by electro-electrodialysis. Journal of Membrane Science, 2019, 573, 64-72.	8.2	20

#	Article	IF	CITATIONS
109	Evaluation of Nutritional Compositions, Bioactive Compounds, and Antioxidant Activities of Shanxi Aged Vinegars During the Aging Process. Journal of Food Science, 2018, 83, 2638-2644.	3.1	19
110	Holographic polymer nanocomposites with simultaneously boosted diffraction efficiency and upconversion photoluminescence. Composites Science and Technology, 2019, 181, 107705.	7.8	19
111	Photomodulated Morphologies in Halogen Bond–Driven Assembly during Gel–Sol Transition. Macromolecular Rapid Communications, 2019, 40, 1800629.	3.9	19
112	Facile Fabrication of Polymer Electrolytes via Lithium Salt-Accelerated Thiol-Michael Addition for Lithium-Ion Batteries. Macromolecules, 2020, 53, 7450-7459.	4.8	19
113	Holographic polymer nanocomposites with ordered structures and improved electro-optical performance by doping POSS. Composites Part B: Engineering, 2019, 174, 107045.	12.0	18
114	Monochromatic "Photoinitibitorâ€â€Mediated Holographic Photopolymer Electrolytes for Lithiumâ€lon Batteries. Advanced Science, 2019, 6, 1900205.	11.2	18
115	A triple-stimuli responsive supramolecular hydrogel based on methoxy-azobenzene-grafted poly(acrylic acid) and β-cyclodextrin dimer. Polymer, 2021, 221, 123617.	3.8	18
116	Anatase/rutile titania anchored carbon nanotube porous nanocomposites as superior anodes for lithium ion batteries. CrystEngComm, 2016, 18, 4489-4494.	2.6	17
117	Effect of ketyl radical on the structure and performance of holographic polymer/liquid-crystal composites. Science China Materials, 2019, 62, 1921-1933.	6.3	17
118	Visible Light Rewritable and Long‣ived Colors in Cholesteric Liquid Crystals: A Facile Coâ€Doping Strategy. Macromolecular Rapid Communications, 2019, 40, e1900037.	3.9	17
119	Amide group-containing polar solvents as ligands for iron-catalyzed atom transfer radical polymerization of methyl methacrylate. RSC Advances, 2015, 5, 43724-43732.	3.6	16
120	Bio-inspired stem-like composites based on highly aligned SiC nanowires. Chemical Engineering Journal, 2020, 389, 123466.	12.7	16
121	Noncovalent immobilization of pyrene-terminated hyperbranched triazole-based polymeric ionic liquid onto graphene for highly active and recyclable catalysis of CO ₂ /epoxide cycloaddition. Catalysis Science and Technology, 2017, 7, 4173-4181.	4.1	15
122	Liquid Crystals under Confinement in Submicrometer Capsules. Langmuir, 2018, 34, 10955-10963.	3.5	15
123	FeBr ₂ -Catalyzed Bulk ATRP Promoted by Simple Inorganic Salts. Macromolecules, 2019, 52, 5366-5376.	4.8	15
124	A Porphyrinic Donor–Acceptor Conjugated Porous Polymer as Highly Efficient Photocatalyst for PET–RAFT Polymerization. Macromolecular Rapid Communications, 2022, 43, e2200173.	3.9	15
125	Formation of hybrid core–shell microgels induced by autonomous unidirectional migration of nanoparticles. Materials Horizons, 2016, 3, 78-82.	12.2	14
126	Photomodulated Electro-optical Response in Self-Supporting Liquid Crystalline Physical Gels. Langmuir, 2018, 34, 7519-7526.	3.5	14

#	Article	IF	CITATIONS
127	Holographic polymer nanocomposites with both high diffraction efficiency and bright upconversion emission by incorporating liquid crystals and core-shell structured upconversion nanoparticles. Composites Part B: Engineering, 2020, 199, 108290.	12.0	14
128	Polymer–inorganic hybrid microparticles with hierarchical structures formed by interfacial instabilities of emulsion droplets. Soft Matter, 2012, 8, 2697.	2.7	13
129	A Oneâ€Step Route to CO ₂ â€Based Block Copolymers by Simultaneous ROCOP of CO ₂ /Epoxides and RAFT Polymerization of Vinyl Monomers. Angewandte Chemie, 2018, 130, 3655-3659.	2.0	13
130	Chirality-Enabled Liquid Crystalline Physical Gels with High Modulus but Low Driving Voltage. ACS Applied Materials & Interfaces, 2018, 10, 43184-43191.	8.0	13
131	Performance and Reliability Improvement under High Current Densities in Black Phosphorus Transistors by Interface Engineering. ACS Applied Materials & Interfaces, 2019, 11, 1587-1594.	8.0	13
132	Intrinsically Visible Light-Responsive Liquid Crystalline Physical Gels Driven by a Halogen Bond. Langmuir, 2020, 36, 11873-11879.	3.5	13
133	Chain-length effect on binary superlattices of polymer-tethered nanoparticles. Materials Chemistry Frontiers, 2020, 4, 2089-2095.	5.9	13
134	Z/E Effect on Phase Behavior of Main-Chain Liquid Crystalline Polymers Bearing AlEgens. Macromolecules, 2021, 54, 10740-10749.	4.8	13
135	Interface Engineering via Photopolymerization-Induced Phase Separation for Flexible UV-Responsive Phototransistors. ACS Applied Materials & amp; Interfaces, 2018, 10, 7487-7496.	8.0	12
136	Morphology and rheology of PP/POE blends in high shear stress field. Journal of Thermoplastic Composite Materials, 2018, 31, 1263-1280.	4.2	12
137	In-situ shear exfoliation and thermal conductivity of SBS/Graphite nanoplatelet nanocomposites. Composites Part B: Engineering, 2020, 197, 108172.	12.0	12
138	One-Pot Synthesis of Polyester-Based Linear and Graft Copolymers for Solid Polymer Electrolytes. CCS Chemistry, 2022, 4, 3134-3149.	7.8	12
139	Deepâ€Red Emissive Squaraineâ€AIEgen in Elastomer Enabling High Contrast and Fast Thermoresponse for Anti ounterfeiting and Temperature Sensing**. Chemistry - A European Journal, 2022, 28, .	3.3	12
140	Concurrent Solutionâ€Like Decoloration Rate and High Mechanical Strength from Polymerâ€Dispersed Photochromic Organogel. Macromolecular Rapid Communications, 2014, 35, 741-746.	3.9	11
141	Low-voltage-driven and highly-diffractive holographic polymer dispersed liquid crystals with spherical morphology. RSC Advances, 2017, 7, 51847-51857.	3.6	11
142	Epoxy/ionic liquid-like MWCNTs composites with improved processability and mechanical properties. Composites Communications, 2019, 15, 46-52.	6.3	11
143	Nacre-inspired Polymer Nanocomposites with High-performance and Multifunctional Properties Realized by a Facile Evaporation-induced Self-assembly Approach. ACS Sustainable Chemistry and Engineering, 2019, 7, 19787-19798.	6.7	11
144	Hydrogen bond driven self-supporting organogels from main-chain liquid crystalline polymers. Polymer, 2020, 188, 122148.	3.8	11

#	Article	IF	CITATIONS
145	Ion-selective aramid nanofiber-based Janus separators fabricated by a dry-wet phase inversion approach for lithium–sulfur batteries. Journal of Materials Chemistry A, 2022, 10, 5317-5327.	10.3	11
146	Synthesis and photo-responsive behaviors of hollow polyazobenzene micro-spheres. Science Bulletin, 2010, 55, 3441-3447.	1.7	10
147	Oxygenâ€Triggered Switchable Polymerization for the Oneâ€Pot Synthesis of CO ₂ â€Based Block Copolymers from Monomer Mixtures. Angewandte Chemie, 2019, 131, 14449-14456.	2.0	9
148	Insights into molecular packing effects on the emission properties of fluorenone-based molecules in the aggregate state. Journal of Materials Chemistry C, 2021, 9, 13687-13696.	5.5	9
149	Light regulation and long-lived stability of RGB colors in cholesteric liquid crystal physical gels <i>via</i> a mixing strategy. Soft Matter, 2021, 17, 3216-3221.	2.7	9
150	Aluminum Porphyrin Complex Mediated Auto-Tandem Catalysis for One-Pot Synthesis of Block Copolymers. CCS Chemistry, 2022, 4, 122-131.	7.8	9
151	Ligand- and solvent-free ATRP of MMA with FeBr ₃ and inorganic salts. Polymer Chemistry, 2020, 11, 1375-1385.	3.9	8
152	Crosstalkâ€Free Patterning of Cooperativeâ€Thermoresponse Images by the Synergy of the AIEgen with the Liquid Crystal. Angewandte Chemie, 2020, 132, 10152-10158.	2.0	8
153	Crystal-Like Polymer Microdiscs. Macromolecules, 2015, 48, 5944-5950.	4.8	7
154	Switchable Polymerization Triggered by Fast and Quantitative Insertion of Carbon Monoxide into Cobalt–Oxygen Bonds. Angewandte Chemie, 2020, 132, 6044-6050.	2.0	7
155	Rewritable Polymer Films Based on Topo-Polymerization of Diacetylenes in Poly(Propylene Carbonate). ACS Sustainable Chemistry and Engineering, 2021, 9, 5902-5909.	6.7	7
156	Cobaltâ€Mediated Switchable Catalysis for the Oneâ€Pot Synthesis of Cyclic Polymers. Angewandte Chemie, 2021, 133, 17111-17116.	2.0	7
157	Configurationâ€Dependent Liquid Crystal and Gel Behaviors of Tetraphenyletheneâ€Containing Mainâ€Chain Copolyesters. Macromolecular Rapid Communications, 2022, 43, e2200154.	3.9	7
158	Control on self-assembly structures of rod-coil-rod (PANI)98â^'(PEG)136â^'(PANI)98 triblock copolymer. Frontiers of Chemical Engineering in China, 2008, 2, 85-88.	0.6	6
159	Synthesis of poly(<i>n</i> â€butyl acrylate) homopolymer and poly(styreneâ€ <i>b</i> â€ <i>n</i> â€butyl) Tj ETQq Journal of Polymer Science Part A, 2016, 54, 611-620.	1 1 0.7843 2.3	314 rgBT /〇 6
160	Initiatorâ€free atom transfer radical polymerization of methyl methacrylate based on FeBr ₃ (PPh ₃) _{<i>n</i>} system. Journal of Polymer Science Part A, 2017, 55, 3842-3850.	2.3	6
161	Efficient thermal management of lithium-sulfur batteries by highly thermally conductive LBL-assembled composite separators. Electrochimica Acta, 2022, 407, 139807.	5.2	5
162	Living radical polymerization of vinyl acetate mediated by iron(iii) acetylacetonate in the presence of a reducing agent. RSC Advances, 2015, 5, 96345-96352.	3.6	4

#	Article	IF	CITATIONS
163	EFFECTS OF DIFFERENT ALCOHOLS ON PHOTOPOLYMERIZATION KINETICS, ELECTRO-OPTICAL PERFORMANCES OF POLYMER DISPERSED LIQUID CRYSTALS. Acta Polymerica Sinica, 2012, 012, 41-46.	0.0	4
164	Evaluation of impact damage tolerance in carbon fabric/epoxy-matrix composites by electrical resistance measurement. Journal Wuhan University of Technology, Materials Science Edition, 2012, 27, 484-488.	1.0	3
165	Active, effective, and "green―iron(iii)/polar solvent catalysts for AGET ATRP of methyl methacrylate with various morphologies of elemental silver as a reducing agent. RSC Advances, 2016, 6, 88490-88497.	3.6	3
166	Peanut-Like Crystals in Polycarbonate/Plasticizer Blends. Macromolecular Chemistry and Physics, 2017, 218, 1600471.	2.2	3
167	Photopatterning of Carbon Dots in Poly(vinyl alcohol) with Photoacid Generators. Macromolecular Rapid Communications, 2022, 43, e2100868.	3.9	3
168	Preparative optimization of cellulose microspheres applied as supports for high-performance liquid chromatography. Journal Wuhan University of Technology, Materials Science Edition, 2013, 28, 460-466.	1.0	2
169	Lithiumâ€Metal Batteries: Polycationic Polymer Layer for Airâ€Stable and Dendriteâ€Free Li Metal Anodes in Carbonate Electrolytes (Adv. Mater. 12/2021). Advanced Materials, 2021, 33, 2170087.	21.0	2
170	MoS ₂ Decorated Silver Nanowireâ€Reduced Graphene Oxide Aerogel Microâ€Particle for Thermally Conductive Polymer Composites with Enhanced Flame Retardancy. Macromolecular Rapid Communications, 2022, 43, e2200026.	3.9	2
171	Helix Induction and Inversion of Polymeric Foldamer Regulated by the Single Enantiomers. Macromolecular Rapid Communications, 2022, , 2200238.	3.9	2
172	Block Copolymer Capsules with Structureâ€Dependent Release Behavior. Angewandte Chemie, 2016, 128, 14853-14857.	2.0	1
173	Nano-silica enhanced liquid-crystalline composite gels. Chinese Science Bulletin, 2016, 61, 2155-2162.	0.7	1
174	Removal of Metal Ions in Phosphoric Acid by Electro-Electrodialysis with Cross-Linked Anion-Exchange Membranes. ACS Omega, 2021, 6, 32417-32430.	3.5	1
175	Towards a consistent methodology for testing the electromechanical performance of strip polymer composite actuators. Polymer Testing, 2022, 106, 107463.	4.8	1