
Carlos Fernandez-Tornero

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/46855/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	FtsZ filament structures in different nucleotide states reveal the mechanism of assembly dynamics. PLoS Biology, 2022, 20, e3001497.	5.6	11
2	Targeting the FtsZ Allosteric Binding Site with a Novel Fluorescence Polarization Screen, Cytological and Structural Approaches for Antibacterial Discovery. Journal of Medicinal Chemistry, 2021, 64, 5730-5745.	6.4	11
3	Ty1 integrase is composed of an active N-terminal domain and a large disordered C-terminal module dispensable for its activity inÂvitro. Journal of Biological Chemistry, 2021, 297, 101093.	3.4	4
4	Nucleotideâ€induced folding of cell division protein FtsZ from <i>Staphylococcus aureus</i> . FEBS Journal, 2020, 287, 4048-4067.	4.7	15
5	The crystal structure of human XPC, the xeroderma pigmentosum group G endonuclease, provides insight into nucleotide excision DNA repair. Nucleic Acids Research, 2020, 48, 9943-9958.	14.5	14
6	Genetic analyses led to the discovery of a super-active mutant of the RNA polymerase I. PLoS Genetics, 2019, 15, e1008157.	3.5	25
7	RNA polymerase I activation and hibernation: unique mechanisms for unique genes. Transcription, 2018, 9, 248-254.	3.1	27
8	Structural basis of RNA polymerase I stalling at UV light-induced DNA damage. Proceedings of the National Academy of Sciences of the United States of America, 2018, 115, 8972-8977.	7.1	27
9	The dynamic assembly of distinct RNA polymerase I complexes modulates rDNA transcription. ELife, 2017, 6, .	6.0	60
10	Hidden α-helical propensity segments within disordered regions of the transcriptional activator CHOP. PLoS ONE, 2017, 12, e0189171.	2.5	6
11	Sub1 contacts the RNA polymerase II stalk to modulate mRNA synthesis. Nucleic Acids Research, 2017, 45, 2458-2471.	14.5	19
12	Solving the RNA polymerase I structural puzzle. Acta Crystallographica Section D: Biological Crystallography, 2014, 70, 2570-2582.	2.5	23
13	Structural Basis of Transcription Initiation by Bacterial RNA Polymerase Holoenzyme. Journal of Biological Chemistry, 2014, 289, 24549-24559.	3.4	159
14	The structures of cytosolic and plastid-located glutamine synthetases from <i>Medicago truncatula</i> reveal a common and dynamic architecture. Acta Crystallographica Section D: Biological Crystallography, 2014, 70, 981-993.	2.5	25
15	Backstage the RNA Polymerase I Structure: The Art of Crystallography. Acta Crystallographica Section A: Foundations and Advances, 2014, 70, C330-C330.	0.1	0
16	Crystal structure of RNA polymerase I. Acta Crystallographica Section A: Foundations and Advances, 2014, 70, C1391-C1391.	0.1	0
17	Crystal structure of the 14-subunit RNA polymeraseÂl. Nature, 2013, 502, 644-649.	27.8	179
18	Structural and Functional Characterization of a Phosphatase Domain within Yeast General Transcription Factor IIIC. Journal of Biological Chemistry, 2013, 288, 15110-15120.	3.4	13

#	Article	IF	CITATIONS
19	Mass Spectrometry Reveals Stable Modules in holo and apo RNA Polymerases I and III. Structure, 2011, 19, 90-100.	3.3	47
20	Analyzing RNA polymerase III by electron cryomicroscopy. RNA Biology, 2011, 8, 760-765.	3.1	12
21	Conformational flexibility of RNA polymerase III during transcriptional elongation. EMBO Journal, 2010, 29, 3762-3772.	7.8	64
22	A systematic screen for protein–lipid interactions in <i>Saccharomyces cerevisiae</i> . Molecular Systems Biology, 2010, 6, 430.	7.2	146
23	Structure of the <i>Drosophila</i> nucleosome core particle highlights evolutionary constraints on the H2Aâ€H2B histone dimer. Proteins: Structure, Function and Bioinformatics, 2008, 71, 1-7.	2.6	55
24	Insights into Transcription Initiation and Termination from the Electron Microscopy Structure of Yeast RNA Polymerase III. Molecular Cell, 2007, 25, 813-823.	9.7	74
25	Structure of the τ60/Δτ91 Subcomplex of Yeast Transcription Factor IIIC: Insights into Preinitiation Complex Assembly. Molecular Cell, 2006, 24, 221-232.	9.7	32
26	Expression, proteolytic analysis, reconstitution, and crystallization of the τ60/τ91 subcomplex of yeast TFIIIC. Protein Expression and Purification, 2006, 45, 255-261.	1.3	3
27	The Histone Fold Subunits of Drosophila CHRAC Facilitate Nucleosome Sliding through Dynamic DNA Interactions. Molecular and Cellular Biology, 2005, 25, 9886-9896.	2.3	71
28	Ofloxacin-like Antibiotics Inhibit Pneumococcal Cell Wall-degrading Virulence Factors. Journal of Biological Chemistry, 2005, 280, 19948-19957.	3.4	12
29	Synthesis of the Blood Circulating C-terminal Fragment of Insulin-like Growth Factor (IGF)-binding Protein-4 in Its Native Conformation. Journal of Biological Chemistry, 2005, 280, 18899-18907.	3.4	15
30	A conformational switch between transcriptional repression and replication initiation in the RepA dimerization domain. Nature Structural and Molecular Biology, 2003, 10, 565-571.	8.2	78
31	Leads for Development of New Naphthalenesulfonate Derivatives with Enhanced Antiangiogenic Activity. Journal of Biological Chemistry, 2003, 278, 21774-21781.	3.4	42
32	Two New Crystal Forms of the Choline-binding Domain of the Major Pneumococcal Autolysin: Insights into the Dynamics of the Active Homodimer. Journal of Molecular Biology, 2002, 321, 163-173.	4.2	52
33	Sperm Coating Mechanism from the 1.8 Ã Crystal Structure of PDC-109-Phosphorylcholine Complex. Structure, 2002, 10, 505-514.	3.3	84
34	Expression, crystallization and preliminary X-ray diffraction studies on the complete choline-binding domain of the major pneumococcal autolysin. Acta Crystallographica Section D: Biological Crystallography, 2002, 58, 556-558.	2.5	6
35	A novel solenoid fold in the cell wall anchoring domain of the pneumococcal virulence factor LytA. Nature Structural Biology, 2001, 8, 1020-1024.	9.7	157