
Taras Kavetskyy

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4685050/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Global, regional, and national burden of bone fractures in 204 countries and territories, 1990–2019: a systematic analysis from the Global Burden of Disease Study 2019. The Lancet Healthy Longevity, 2021, 2, e580-e592.	4.6	277
2	Global injury morbidity and mortality from 1990 to 2017: results from the Global Burden of Disease Study 2017. Injury Prevention, 2020, 26, i96-i114.	2.4	103
3	CRISPR Systems for COVID-19 Diagnosis. ACS Sensors, 2021, 6, 1430-1445.	7.8	100
4	Effects of quercetin loaded nanostructured lipid carriers on the paraquat-induced toxicity in human lymphocytes. Pesticide Biochemistry and Physiology, 2020, 167, 104586.	3.6	85
5	The global, regional, and national burden of gastro-oesophageal reflux disease in 195 countries and territories, 1990–2017: a systematic analysis for the Global Burden of Disease Study 2017. The Lancet Gastroenterology and Hepatology, 2020, 5, 561-581.	8.1	69
6	Nanotechnology against the novel coronavirus (severe acute respiratory syndrome coronavirusÂ2): diagnosis, treatment, therapy and future perspectives. Nanomedicine, 2021, 16, 497-516.	3.3	61
7	Natural and Synthetic Bioinks for 3D Bioprinting. Advanced NanoBiomed Research, 2021, 1, 2000097.	3.6	60
8	Biomedical applications of aluminium oxide nanoparticles. Micro and Nano Letters, 2018, 13, 1227-1231.	1.3	59
9	Magnetic carbon nanotubes: preparation, physical properties, and applications in biomedicine. Artificial Cells, Nanomedicine and Biotechnology, 2018, 46, 1314-1330.	2.8	58
10	An overview application of silver nanoparticles in inhibition of herpes simplex virus. Artificial Cells, Nanomedicine and Biotechnology, 2018, 46, 263-267.	2.8	49
11	Cell junction proteins: Crossing the glomerular filtration barrier in diabetic nephropathy. International Journal of Biological Macromolecules, 2020, 148, 475-482.	7.5	48
12	Estimating global injuries morbidity and mortality: methods and data used in the Global Burden of Disease 2017 study. Injury Prevention, 2020, 26, i125-i153.	2.4	44
13	Complete ablation of tumors using synchronous chemoradiation with bimetallic theranostic nanoparticles. Bioactive Materials, 2022, 7, 74-84.	15.6	41
14	Synthesis of periodic plasmonic microstructures with copper nanoparticles in silica glass by low-energy ion implantation. Applied Physics A: Materials Science and Processing, 2013, 111, 261-264.	2.3	40
15	The role of microRNAs and nanoparticles in ovarian cancer: a review. Artificial Cells, Nanomedicine and Biotechnology, 2018, 46, 241-247.	2.8	36
16	Metal-free nanostructured catalysts: sustainable driving forces for organic transformations. Green Chemistry, 2021, 23, 6223-6272.	9.0	32
17	Curbed of molybdenum oxido-diperoxido complex on ionic liquid body of mesoporous Bipy-PMO-IL as a promising catalyst for selective sulfide oxidation. Journal of Molecular Liquids, 2020, 312, 113388.	4.9	23
18	IR impurity absorption in Sb2S3–GeS2(Ge2S3) chalcogenide glasses. Infrared Physics and Technology, 2000. 41. 41-45.	2.9	22

#	Article	IF	CITATIONS
19	Iron oxide and gold bimetallic radiosensitizers for synchronous tumor chemoradiation therapy in 4T1 breast cancer murine model. Journal of Materials Chemistry B, 2021, 9, 4510-4522.	5.8	22
20	The Potential Application of Magnetic Nanoparticles for Liver Fibrosis Theranostics. Frontiers in Chemistry, 2021, 9, 674786.	3.6	22
21	Structural Defects and Positronium Formation in 40 keV B ⁺ -Implanted Polymethylmethacrylate. Journal of Physical Chemistry B, 2014, 118, 4194-4200.	2.6	20
22	Charged defects in chalcogenide vitreous semiconductors studied with combined Raman scattering and PALS methods. Radiation Measurements, 2007, 42, 712-714.	1.4	19
23	Structure of Agl-doped Ge–In–S glasses: Experiment, reverse Monte Carlo modelling, and density functional calculations. Journal of Solid State Chemistry, 2012, 192, 7-15.	2.9	18
24	Threshold restoration effects in γ-irradiated chalcogenide glasses. Journal of Non-Crystalline Solids, 2005, 351, 993-997.	3.1	16
25	Microporous carbon fibers as electroconductive immobilization matrixes: Effect of their structure on operational parameters of laccase-based amperometric biosensor. Materials Science and Engineering C, 2020, 109, 110570.	7.3	16
26	Optical properties of chalcogenide glasses with ion-synthesized copper nanoparticles. Technical Physics Letters, 2013, 39, 1-4.	0.7	15
27	New micro/nanocomposite with peroxidase-like activity in construction of oxidases-based amperometric biosensors for ethanol and glucose analysis. Analytica Chimica Acta, 2021, 1143, 201-209.	5.4	15
28	Void-species nanostructure of chalcogenide glasses studied with FSDP-related XRD. Journal of Physics and Chemistry of Solids, 2007, 68, 712-715.	4.0	14
29	Laccaseâ€containing ureasil–polymer composite as the sensing layer of an amperometric biosensor. Journal of Applied Polymer Science, 2017, 134, 45278.	2.6	14
30	Improvement of amperometric laccase biosensor using enzyme-immobilized gold nanoparticles coupling with ureasil polymer as a host matrix. Gold Bulletin, 2019, 52, 79-85.	2.4	14
31	Monitoring of drug resistance towards reducing the toxicity of pharmaceutical compounds: Past, present and future. Journal of Pharmaceutical and Biomedical Analysis, 2020, 186, 113265.	2.8	13
32	On the correlation between void-species structure of vitreous arsenic selenide studied with X-ray diffraction and positron annihilation techniques. Journal of Non-Crystalline Solids, 2006, 352, 700-703.	3.1	12
33	Radiation-modified structure of Ge25Sb15S60 and Ge35Sb5S60 glasses. Journal of Chemical Physics, 2008, 128, 244514.	3.0	12
34	Dependence of operational parameters of laccase-based biosensors on structure of photocross-linked polymers as holding matrixes. European Polymer Journal, 2019, 115, 391-398.	5.4	12
35	Carbonization in boron-ion-implanted polymethylmethacrylate as revealed from Raman spectroscopy and electrical measurements. Spectroscopy Letters, 2016, 49, 5-10.	1.0	11
36	Sustainable design and novel synthesis of highly recyclable magnetic carbon containing aromatic sulfonic acid: Fe ₃ O ₄ @C/Ph—SO ₃ H as green solid acid promoted regioselective synthesis of tetrazoloquinazolines. Applied Organometallic Chemistry, 2021, 35, e6346.	3.5	11

#	Article	IF	CITATIONS
37	Magneto-immunoassay of cancer biomarkers: Recent progress and challenges in biomedical analysis. Microchemical Journal, 2021, 167, 106320.	4.5	11
38	Role of dendrimers in advanced drug delivery andÂbiomedical applications: a review. Experimental Oncology, 2018, 40, 178-183.	0.1	11
39	New organicâ€inorganic hybrid ureasilâ€based polymer and glassâ€polymer composites with ionâ€implanted silver nanoparticles. Physica Status Solidi C: Current Topics in Solid State Physics, 2012, 9, 2444-2447.	0.8	9
40	Structural modification of chalcogenide glasses by gamma-irradiation studied with DBAL technique. Physica Status Solidi C: Current Topics in Solid State Physics, 2012, 9, 2420-2423.	0.8	8
41	Enhanced ~1.8â€ [−] μm photoluminescence under blue light excitation in Tm Bi co-doped germanate glass and its temperature dependence. Journal of Non-Crystalline Solids, 2019, 525, 119645.	3.1	8
42	Recent trends in enzyme engineering aiming to improve bioelectrocatalysis proceeding with direct electron transfer. Current Opinion in Electrochemistry, 2021, 31, 100856.	4.8	8
43	<title>Vibrational and structural properties of unmodified and radiation-modified chalcogenide glasses for advanced optical applications</title> . , 2008, , .		7
44	Study of microindentation cracks in bismuth-doped arsenic selenide glasses. Journal of Non-Crystalline Solids, 2011, 357, 3117-3122.	3.1	7
45	Free-volume defects and microstructure in ion-conducting Ag/AgI-As2S3 glasses as revealed from positron annihilation and microhardness measurements. Solid State Ionics, 2011, 183, 16-19.	2.7	6
46	New Organic-Inorganic Hybrid Ureasil-Based Polymer Materials Studied by PALS and SEM Techniques. Materials Science Forum, 0, 733, 171-174.	0.3	6
47	Comparative Study of Optical Properties of Polarizing Oxide Glasses with Silver Nanorods and Chalcogenide Glasses with Copper Nanoparticles. Physics Procedia, 2013, 48, 191-195.	1.2	6
48	On the application of methods of positron annihilation spectroscopy for studying radiation-stimulated processes in chalcogenide glassy semiconductors. Semiconductors, 2014, 48, 9-12.	0.5	6
49	Stoichiometric deviations in bond distances in the mixed As2S3-As2Se3 system: Raman spectroscopy and EXAFS studies. Journal of Non-Crystalline Solids, 2019, 521, 119533.	3.1	6
50	On the structural-optical correlations in radiation-modified chalcogenide glasses. Journal of Physics: Conference Series, 2011, 289, 012007.	0.4	5
51	Impact of the sample thickness and Î ³ -irradiation dose on the occurrence of radiation-induced optical effects in chalcogenide vitreous semiconductors of the Ge-Sb-S system. Semiconductors, 2011, 45, 499-502.	0.5	5
52	Structural and free volume characterization of sol–gel organic–inorganic hybrids, obtained by coâ€condensation of two ureasilicate stoichiometric precursors. Journal of Applied Polymer Science, 2021, 138, 50615.	2.6	5
53	Low-temperature positron annihilation study of B+-ion implanted PMMA. Low Temperature Physics, 2014, 40, 747-751.	0.6	4
54	Optical characterization of nanocomposite polymer formed by ion implantation of boron. Journal of Materials Science: Materials in Electronics, 2017, 28, 7115-7120.	2.2	4

#	Article	IF	CITATIONS
55	Formation of heavy clusters in ion-irradiated compounds. Vacuum, 2019, 164, 149-152.	3.5	4
56	Structural order in (As2S3) (GeS2)1â^' glasses. Journal of Non-Crystalline Solids, 2021, 572, 121075.	3.1	4
57	Network Properties of Ureasil-Based Polymer Matrixes for Construction of Amperometric Biosensors as Probed by PALS and Swelling Experiments. Acta Physica Polonica A, 2017, 132, 1515-1519.	0.5	4
58	Metronidazole conjugated bismuth sulfide nanoparticles for enhanced X-ray radiation therapy. Journal of Drug Delivery Science and Technology, 2022, 71, 103336.	3.0	4
59	Interpretation of Radiation-Induced Phenomena in Chalcogenide Glasses of Ge–Sb–S System Using Free Volume and Covalent Chemical Bonds Concepts. Solid State Phenomena, 2003, 90-91, 241-246.	0.3	3
60	Structural study of (As2S3)0.6(GeS2)0.4 glass. Journal of Non-Crystalline Solids, 2009, 355, 1801-1806.	3.1	3
61	Reply on the "critical comments on speculations with … free-volume defects … in ion-conducting Ag/Agl–As2S3 glasses…― Solid State Ionics, 2013, 233, 107-109.	2.7	3
62	The formation of periodic diffractive plasmonic nanostructures with implanted copper nanoparticles by local ion etching of silica glass. Technical Physics Letters, 2013, 39, 591-593.	0.7	3
63	Synthesis and Evaluation of a Triblock Copolymer/ZnO Nanoparticles from Poly(ε-caprolactone) and Poly(Acrylic Acid) as a Potential Drug Delivery Carrier. Drug Research, 2017, 67, 228-238.	1.7	3
64	High-dose boron and silver ion implantation into PMMA probed by slow positrons: Effects of carbonization and formation of metal nanoparticles. Journal of Physics: Conference Series, 2017, 791, 012028.	0.4	3
65	D″actateâ€selective amperometric biosensor based on the mitochondrial fraction of <i>Ogataea polymorpha</i> recombinant cells. Yeast, 2019, 36, 341-348.	1.7	3
66	Controlling the Network Properties of Polymer Matrices for Improvement of Amperometric Enzyme Biosensors: Contribution of Positron Annihilation. Acta Physica Polonica A, 2020, 137, 246-249.	0.5	2
67	Long-range effect in ion-implanted polymers. Vacuum, 2022, 200, 111038.	3.5	2
68	Optical properties of the synthesized ZnO with ion implanted silver nanoparticles. Technical Physics Letters, 2015, 41, 537-539.	0.7	1
69	New approach to create a counting grid by ion-mask implantation for analysis of small biological objects. Vacuum, 2019, 165, 320-323.	3.5	1
70	lon-induced processes in polymer composite materials: Positron annihilation spectroscopy in combination with UV-Vis absorption and Raman spectroscopy. AIP Conference Proceedings, 2019, , .	0.4	1
71	Use of Magnetic Susceptibility Measurement for Analysis of Self-Organized Magnetic Nanoparticles in Biological Systems. NATO Science for Peace and Security Series B: Physics and Biophysics, 2020, , 215-221.	0.3	1
72	Nanostructural Characterization Of Amorphous Chalcogenides By X-Ray Diffraction And Positron Annihilation Techniques. NATO Science for Peace and Security Series B: Physics and Biophysics, 2009, , 365-370.	0.3	1

#	Article	IF	CITATIONS
73	Study of Endogenous Paramagnetic Centers in Biological Systems from Different Areas. Concepts in Magnetic Resonance Part B, 2021, 2021, 1-5.	0.7	1
74	Novel Photocross-Linked Polymers for Construction of Laccase-Based Amperometric Biosensors. NATO Science for Peace and Security Series B: Physics and Biophysics, 2020, , 303-310.	0.3	0
75	Polymer Lattice and Track Nanostructures to Create Novel Biosensors. NATO Science for Peace and Security Series A: Chemistry and Biology, 2020, , 267-273.	0.5	Ο
76	Design of Mesoscopic Ordered Titania and Silica Hybrid Sol-Gel Films as Planar Waveguide. NATO Science for Peace and Security Series B: Physics and Biophysics, 2020, , 131-137.	0.3	0