
Yasuhiro Kadota

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4685038/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Direct Regulation of the NADPH Oxidase RBOHD by the PRR-Associated Kinase BIK1 during Plant Immunity. Molecular Cell, 2014, 54, 43-55.	4.5	744
2	Regulation of the NADPH Oxidase RBOHD During Plant Immunity. Plant and Cell Physiology, 2015, 56, 1472-1480.	1.5	480
3	Phosphorylation-Dependent Differential Regulation of Plant Growth, Cell Death, and Innate Immunity by the Regulatory Receptor-Like Kinase BAK1. PLoS Genetics, 2011, 7, e1002046.	1.5	439
4	Synergistic Activation of the Arabidopsis NADPH Oxidase AtrbohD by Ca2+ and Phosphorylation. Journal of Biological Chemistry, 2008, 283, 8885-8892.	1.6	415
5	The calcium-permeable channel OSCA1.3 regulates plant stomatal immunity. Nature, 2020, 585, 569-573.	13.7	208
6	Structural and Functional Analysis of SGT1 Reveals That Its Interaction with HSP90 Is Required for the Accumulation of Rx, an R Protein Involved in Plant Immunity. Plant Cell, 2007, 19, 3791-3804.	3.1	168
7	The Arabidopsis NADPH oxidases <i>RbohD</i> and <i>RbohF</i> display differential expression patterns and contributions during plant immunity. Journal of Experimental Botany, 2016, 67, 1663-1676.	2.4	161
8	NLR sensors meet at the SGT1–HSP90 crossroad. Trends in Biochemical Sciences, 2010, 35, 199-207.	3.7	160
9	A Bacterial Tyrosine Phosphatase Inhibits Plant Pattern Recognition Receptor Activation. Science, 2014, 343, 1509-1512.	6.0	152
10	The HSP90 complex of plants. Biochimica Et Biophysica Acta - Molecular Cell Research, 2012, 1823, 689-697.	1.9	132
11	The Variable Domain of a Plant Calcium-dependent Protein Kinase (CDPK) Confers Subcellular Localization and Substrate Recognition for NADPH Oxidase. Journal of Biological Chemistry, 2013, 288, 14332-14340.	1.6	129
12	The Arabidopsis Malectin-Like/LRR-RLK IOS1 is Critical for BAK1-Dependent and BAK1-Independent Pattern-Triggered Immunity. Plant Cell, 2016, 28, tpc.00313.2016.	3.1	126
13	Phosphocode-dependent functional dichotomy of a common co-receptor in plant signalling. Nature, 2018, 561, 248-252.	13.7	126
14	Plant Immune Responses to Parasitic Nematodes. Frontiers in Plant Science, 2019, 10, 1165.	1.7	113
15	Structural Basis for Assembly of Hsp90-Sgt1-CHORD Protein Complexes: Implications for Chaperoning of NLR Innate Immunity Receptors. Molecular Cell, 2010, 39, 269-281.	4.5	108
16	Structural and functional coupling of Hsp90- and Sgt1-centred multi-protein complexes. EMBO Journal, 2008, 27, 2789-2798.	3.5	104
17	Quantitative phosphoproteomic analysis reveals common regulatory mechanisms between effector― and PAMPâ€ŧriggered immunity in plants. New Phytologist, 2019, 221, 2160-2175.	3.5	102
18	Cryptogein-Induced Initial Events in Tobacco BY-2 Cells: Pharmacological Characterization of Molecular Relationship among Cytosolic Ca2+ Transients, Anion Efflux and Production of Reactive Oxygen Species. Plant and Cell Physiology, 2004, 45, 160-170.	1.5	91

#	Article	IF	CITATIONS
19	Identification of putative voltage-dependent Ca2+-permeable channels involved in cryptogein-induced Ca2+ transients and defense responses in tobacco BY-2 cells. Biochemical and Biophysical Research Communications, 2004, 317, 823-830.	1.0	87
20	NbCSPR underlies age-dependent immune responses to bacterial cold shock protein in <i>Nicotiana benthamiana</i> . Proceedings of the National Academy of Sciences of the United States of America, 2016, 113, 3389-3394.	3.3	85
21	An artificial metalloenzyme biosensor can detect ethylene gas in fruits and Arabidopsis leaves. Nature Communications, 2019, 10, 5746.	5.8	62
22	Chitin perception in plasmodesmata characterizes submembrane immune-signaling specificity in plants. Proceedings of the National Academy of Sciences of the United States of America, 2020, 117, 9621-9629.	3.3	60
23	Structural and functional analysis of SGT1–HSP90 core complex required for innate immunity in plants. EMBO Reports, 2008, 9, 1209-1215.	2.0	59
24	Crosstalk between elicitor-induced cell death and cell cycle regulation in tobacco BY-2 cells. Plant Journal, 2004, 40, 131-142.	2.8	57
25	Elicitor-Induced Cytoskeletal Rearrangement Relates to Vacuolar Dynamics and Execution of Cell Death: In Vivo Imaging of Hypersensitive Cell Death in Tobacco BY-2 Cells. Plant and Cell Physiology, 2007, 48, 1414-1425.	1.5	51
26	Same tune, different song — cytokinins as virulence factors in plant–pathogen interactions?. Current Opinion in Plant Biology, 2018, 44, 82-87.	3.5	50
27	Exogenous Treatment with Glutamate Induces Immune Responses in <i>Arabidopsis</i> . Molecular Plant-Microbe Interactions, 2020, 33, 474-487.	1.4	46
28	Cell Cycle Dependence of Elicitor-induced Signal Transduction in Tobacco BY-2 Cells. Plant and Cell Physiology, 2005, 46, 156-165.	1.5	42
29	Cell-cycle-dependent regulation of oxidative stress responses and Ca2+ permeable channels NtTPC1A/B in tobacco BY-2 cells. Biochemical and Biophysical Research Communications, 2005, 336, 1259-1267.	1.0	38
30	High-Quality Genome Sequence of the Root-Knot Nematode Meloidogyne arenaria Genotype A2-O. Genome Announcements, 2018, 6, .	0.8	32
31	Calcium ions are involved in the delay of plant cell cycle progression by abiotic stresses. FEBS Letters, 2006, 580, 597-602.	1.3	31
32	Immunoprecipitation of Plasma Membrane Receptor-Like Kinases for Identification of Phosphorylation Sites and Associated Proteins. Methods in Molecular Biology, 2016, 1363, 133-144.	0.4	30
33	Super-Agrobacterium ver. 4: Improving the Transformation Frequencies and Genetic Engineering Possibilities for Crop Plants. Frontiers in Plant Science, 2019, 10, 1204.	1.7	25
34	Negative feedback regulation of microbe-associated molecular pattern-induced cytosolic Ca2+ transients by protein phosphorylation. Journal of Plant Research, 2011, 124, 415-424.	1.2	18
35	Differences in parasitism of <i>Meloidogyne incognita</i> and two genotypes of <i>M.Âarenaria</i> on <i>Solanum torvum</i> in Japan. Journal of Phytopathology, 2017, 165, 575-579.	0.5	17
36	Characterization of the origin recognition complex (ORC) from a higher plant, rice (Oryza sativa L.). Gene, 2005, 353, 23-30.	1.0	16

#	Article	IF	CITATIONS
37	Continuous Recognition of the Elicitor Signal for Several Hours is Prerequisite for Induction of Cell Death and Prolonged Activation of Signaling Events in Tobacco BY-2 Cells. Plant and Cell Physiology, 2006, 47, 1337-1342.	1.5	16
38	Transcriptomic Analysis of Resistant and Susceptible Responses in a New Model Root-Knot Nematode Infection System Using Solanum torvum and Meloidogyne arenaria. Frontiers in Plant Science, 2021, 12, 680151.	1.7	16
39	Current status of the multinational Arabidopsis community. Plant Direct, 2020, 4, e00248.	0.8	13
40	Activation loop phosphorylation of a non-RD receptor kinase initiates plant innate immune signaling. Proceedings of the National Academy of Sciences of the United States of America, 2021, 118, .	3.3	12
41	Cryptogein-Induced Cell Cycle Arrest at G2 Phase is Associated with Inhibition of Cyclin-Dependent Kinases, Suppression of Expression of Cell Cycle-Related Genes and Protein Degradation in Synchronized Tobacco BY-2 Cells. Plant and Cell Physiology, 2011, 52, 922-932.	1.5	11
42	Vacuolar and cytoskeletal dynamics during elicitor-induced programmed cell death in tobacco BY-2 cells. Plant Signaling and Behavior, 2008, 3, 700-703.	1.2	10
43	<i>Solanum palinacanthum</i> Dunal as a potential eggplant rootstock resistant to rootâ€knot nematodes. Journal of Phytopathology, 2022, 170, 185-193.	0.5	5
44	l -Homoserylaminoethanol, a novel dipeptide alcohol inhibitor of eukaryotic DNA polymerase ε from a plant cultured cells, Nicotina tabacum L Bioorganic and Medicinal Chemistry, 2004, 12, 957-962.	1.4	3
45	Roles of the Putative Voltage-Gated Ca ²⁺ Permeable Channels, the TPC1 Family, in Plant Stress Signaling. J Agricultural Meteorology, 2005, 60, 1109-1111.	0.8	3

46 å‹•æ፼‰©å...±é€šã₽å...ç−«ã,»ãf³ã,µãf¼ã₽å^¶å¾¡ã«åfẽẽ,¿ãf³ãfʿã,¯è³ªè¤å•̂体 立体æ§‹é€è§£æžã•ã,‰æ©Ÿè∯!⁄bã«è¿«ã)‹. Kagaku