Stephan Link

List of Publications by Citations

Source: https://exaly.com/author-pdf/4684934/stephan-link-publications-by-citations.pdf

Version: 2024-04-10

This document has been generated based on the publications and citations recorded by exaly.com. For the latest version of this publication list, visit the link given above.

The third column is the impact factor (IF) of the journal, and the fourth column is the number of citations of the article.

66 165 178 27,323 h-index g-index citations papers 29,639 189 7.26 9.9 L-index avg, IF ext. papers ext. citations

#	Paper	IF	Citations
178	Spectral Properties and Relaxation Dynamics of Surface Plasmon Electronic Oscillations in Gold and Silver Nanodots and Nanorods. <i>Journal of Physical Chemistry B</i> , 1999 , 103, 8410-8426	3.4	3183
177	Plasmons in strongly coupled metallic nanostructures. <i>Chemical Reviews</i> , 2011 , 111, 3913-61	68.1	2348
176	Size and Temperature Dependence of the Plasmon Absorption of Colloidal Gold Nanoparticles. Journal of Physical Chemistry B, 1999 , 103, 4212-4217	3.4	2085
175	Shape and size dependence of radiative, non-radiative and photothermal properties of gold nanocrystals. <i>International Reviews in Physical Chemistry</i> , 2000 , 19, 409-453	7	1790
174	Nano-optics from sensing to waveguiding. <i>Nature Photonics</i> , 2007 , 1, 641-648	33.9	1716
173	Simulation of the Optical Absorption Spectra of Gold Nanorods as a Function of Their Aspect Ratio and the Effect of the Medium Dielectric Constant. <i>Journal of Physical Chemistry B</i> , 1999 , 103, 3073-3077	₇ 3·4	1285
172	Alloy Formation of GoldBilver Nanoparticles and the Dependence of the Plasmon Absorption on Their Composition. <i>Journal of Physical Chemistry B</i> , 1999 , 103, 3529-3533	3.4	1180
171	Optical properties and ultrafast dynamics of metallic nanocrystals. <i>Annual Review of Physical Chemistry</i> , 2003 , 54, 331-66	15.7	1121
170	The <code>lightning</code> @old nanorods: fluorescence enhancement of over a million compared to the gold metal. <i>Chemical Physics Letters</i> , 2000 , 317, 517-523	2.5	693
169	Laser-Induced Shape Changes of Colloidal Gold Nanorods Using Femtosecond and Nanosecond Laser Pulses. <i>Journal of Physical Chemistry B</i> , 2000 , 104, 6152-6163	3.4	666
168	Visible to Infrared Luminescence from a 28-Atom Gold Cluster. <i>Journal of Physical Chemistry B</i> , 2002 , 106, 3410-3415	3.4	503
167	Plasmonic colour generation. <i>Nature Reviews Materials</i> , 2017 , 2,	73.3	435
166	Laser Photothermal Melting and Fragmentation of Gold Nanorods: Energy and Laser Pulse-Width Dependence. <i>Journal of Physical Chemistry A</i> , 1999 , 103, 1165-1170	2.8	419
165	Electron dynamics in gold and goldBilver alloy nanoparticles: The influence of a nonequilibrium electron distribution and the size dependence of the electronBhonon relaxation. <i>Journal of Chemical Physics</i> , 1999 , 111, 1255-1264	3.9	298
164	A plasmonic Fano switch. <i>Nano Letters</i> , 2012 , 12, 4977-82	11.5	291
163	Crystallographic facets and shapes of gold nanorods of different aspect ratios. <i>Surface Science</i> , 1999 , 440, L809-L814	1.8	268
162	How Does a Gold Nanorod Melt?#. Journal of Physical Chemistry B, 2000, 104, 7867-7870	3.4	264

161	Thermal Reshaping of Gold Nanorods in Micelles. <i>Journal of Physical Chemistry B</i> , 1998 , 102, 9370-9374	3.4	259
160	Optical characterization of single plasmonic nanoparticles. <i>Chemical Society Reviews</i> , 2015 , 44, 40-57	58.5	258
159	Chiral templating of self-assembling nanostructures by circularly polarized light. <i>Nature Materials</i> , 2015 , 14, 66-72	27	251
158	Vivid, full-color aluminum plasmonic pixels. <i>Proceedings of the National Academy of Sciences of the United States of America</i> , 2014 , 111, 14348-53	11.5	243
157	Plasmonic nanorod absorbers as orientation sensors. <i>Proceedings of the National Academy of Sciences of the United States of America</i> , 2010 , 107, 2781-6	11.5	222
156	Electron Shuttling Across the Interface of CdSe Nanoparticles Monitored by Femtosecond Laser Spectroscopy. <i>Journal of Physical Chemistry B</i> , 1999 , 103, 1783-1788	3.4	209
155	The Relaxation Pathways of CdSe Nanoparticles Monitored with Femtosecond Time-Resolution from the Visible to the IR: Assignment of the Transient Features by Carrier Quenching. <i>Journal of Physical Chemistry B</i> , 2001 , 105, 12286-12292	3.4	207
154	Femtosecond transient-absorption dynamics of colloidal gold nanorods: Shape independence of the electron-phonon relaxation time. <i>Physical Review B</i> , 2000 , 61, 6086-6090	3.3	187
153	Effects of symmetry breaking and conductive contact on the plasmon coupling in gold nanorod dimers. <i>ACS Nano</i> , 2010 , 4, 4657-66	16.7	186
152	One-Photon Plasmon Luminescence and Its Application to Correlation Spectroscopy as a Probe for Rotational and Translational Dynamics of Gold Nanorods. <i>Journal of Physical Chemistry C</i> , 2011 , 115, 15	93 <mark>8</mark> -15	9 47 94
151	Chemical Interface Damping Depends on Electrons Reaching the Surface. ACS Nano, 2017, 11, 2886-289	3 16.7	170
150	Chiral plasmonics of self-assembled nanorod dimers. <i>Scientific Reports</i> , 2013 , 3, 1934	4.9	165
149	Using the plasmon linewidth to calculate the time and efficiency of electron transfer between gold nanorods and graphene. <i>ACS Nano</i> , 2013 , 7, 11209-17	16.7	158
148	Plasmon emission quantum yield of single gold nanorods as a function of aspect ratio. <i>ACS Nano</i> , 2012 , 6, 7177-84	16.7	156
147	Probing a century old prediction one plasmonic particle at a time. <i>Nano Letters</i> , 2010 , 10, 1398-404	11.5	150
146	In situ measurement of bovine serum albumin interaction with gold nanospheres. <i>Langmuir</i> , 2012 , 28, 9131-9	4	138
145	Adsorption of a Protein Monolayer via Hydrophobic Interactions Prevents Nanoparticle Aggregation under Harsh Environmental Conditions. <i>ACS Sustainable Chemistry and Engineering</i> , 2013 , 1, 833-842	8.3	138
144	Adsorption and Unfolding of a Single Protein Triggers Nanoparticle Aggregation. <i>ACS Nano</i> , 2016 , 10, 2103-12	16.7	135

143	High Chromaticity Aluminum Plasmonic Pixels for Active Liquid Crystal Displays. <i>ACS Nano</i> , 2016 , 10, 1108-17	16.7	131
142	Spectroscopic determination of the melting energy of a gold nanorod. <i>Journal of Chemical Physics</i> , 2001 , 114, 2362-2368	3.9	129
141	From tunable core-shell nanoparticles to plasmonic drawbridges: Active control of nanoparticle optical properties. <i>Science Advances</i> , 2015 , 1, e1500988	14.3	127
140	Energy transport in metal nanoparticle chains via sub-radiant plasmon modes. <i>Optics Express</i> , 2011 , 19, 6450-61	3.3	123
139	Electromagnetic energy transport in nanoparticle chains via dark plasmon modes. <i>Nano Letters</i> , 2012 , 12, 1349-53	11.5	121
138	How long does it take to melt a gold nanorod?. <i>Chemical Physics Letters</i> , 1999 , 315, 12-18	2.5	121
137	Noble metal nanowires: from plasmon waveguides to passive and active devices. <i>Accounts of Chemical Research</i> , 2012 , 45, 1887-95	24.3	119
136	Transition from nanoparticle to molecular behavior: a femtosecond transient absorption study of a size-selected 28 atom gold cluster. <i>Chemical Physics Letters</i> , 2002 , 356, 240-246	2.5	118
135	Active modulation of nanorod plasmons. <i>Nano Letters</i> , 2011 , 11, 3797-802	11.5	106
134	Unraveling the origin of chirality from plasmonic nanoparticle-protein complexes. <i>Science</i> , 2019 , 365, 1475-1478	33.3	104
133	Plasmonic Nanoparticles Liquid Crystal Composites Journal of Physical Chemistry C, 2010 , 114, 7251-72	2 53 .8	98
132	Hot electron and phonon dynamics of gold nanoparticles embedded in a gel matrix. <i>Chemical Physics Letters</i> , 2001 , 343, 55-63	2.5	98
131	Single-particle spectroscopy reveals heterogeneity in electrochemical tuning of the localized surface plasmon. <i>Journal of Physical Chemistry B</i> , 2014 , 118, 14047-55	3.4	93
130	One-dimensional coupling of gold nanoparticle plasmons in self-assembled ring superstructures. <i>Nano Letters</i> , 2009 , 9, 1152-7	11.5	90
129	Single-Particle Spectroscopy of Gold Nanorods beyond the Quasi-Static Limit: Varying the Width at Constant Aspect Ratio. <i>Journal of Physical Chemistry C</i> , 2010 , 114, 4934-4938	3.8	88
128	Toward plasmonic polymers. <i>Nano Letters</i> , 2012 , 12, 3967-72	11.5	82
127	Plasmon damping depends on the chemical nature of the nanoparticle interface. <i>Science Advances</i> , 2019 , 5, eaav0704	14.3	8o
126	Photoluminescence of Gold Nanorods: Purcell Effect Enhanced Emission from Hot Carriers. <i>ACS Nano</i> , 2018 , 12, 976-985	16.7	79

125	Relaxation of Plasmon-Induced Hot Carriers. ACS Photonics, 2018, 5, 2584-2595	6.3	79
124	A plethora of plasmonics from the laboratory for nanophotonics at Rice University. <i>Advanced Materials</i> , 2012 , 24, 4842-77, 4774	24	76
123	New Transient Absorption Observed in the Spectrum of Colloidal CdSe Nanoparticles Pumped with High-Power Femtosecond Pulses. <i>Journal of Physical Chemistry B</i> , 1999 , 103, 10775-10780	3.4	76
122	Circular Differential Scattering of Single Chiral Self-Assembled Gold Nanorod Dimers. <i>ACS Photonics</i> , 2015 , 2, 1602-1610	6.3	75
121	Effect of electric field on the photoluminescence intensity of single CdSe nanocrystals. <i>Chemical Physics</i> , 2007 , 341, 169-174	2.3	75
120	Hot Electron Relaxation Dynamics of Gold Nanoparticles Embedded in MgSO4 Powder Compared To Solution: The Effect of the Surrounding Medium. <i>Journal of Physical Chemistry B</i> , 2002 , 106, 945-955	; 3.4	74
119	Characterizing Plasmons in Nanoparticles and Their Assemblies with Single Particle Spectroscopy. Journal of Physical Chemistry Letters, 2011 , 2, 2015-2023	6.4	70
118	Synthesis and single-molecule imaging of highly mobile adamantane-wheeled nanocars. <i>ACS Nano</i> , 2013 , 7, 35-41	16.7	68
117	The pump power dependence of the femtosecond relaxation of CdSe nanoparticles observed in the spectral range from visible to infrared. <i>Journal of Chemical Physics</i> , 2002 , 116, 3828-3833	3.9	68
116	Plasmonic Sensing and Control of Single-Nanoparticle Electrochemistry. <i>CheM</i> , 2018 , 4, 1560-1585	16.2	67
115	Single-particle absorption spectroscopy by photothermal contrast. <i>Nano Letters</i> , 2015 , 15, 3041-7	11.5	66
114	Bleach-imaged plasmon propagation (BlIPP) in single gold nanowires. <i>Nano Letters</i> , 2010 , 10, 3482-5	11.5	66
113	Spiky Gold Nanoshells: Synthesis and Enhanced Scattering Properties. <i>Journal of Physical Chemistry C</i> , 2012 , 116, 10318-10324	3.8	64
112	Chiral and Achiral Nanodumbbell Dimers: The Effect of Geometry on Plasmonic Properties. <i>ACS Nano</i> , 2016 , 10, 6180-8	16.7	64
111	Photoluminescence of a Plasmonic Molecule. ACS Nano, 2015, 9, 7072-9	16.7	63
110	Micrometer-scale translation and monitoring of individual nanocars on glass. ACS Nano, 2009, 3, 351-6	16.7	61
109	Single-Particle Plasmon Voltammetry (spPV) for Detecting Anion Adsorption. <i>Nano Letters</i> , 2016 , 16, 2314-21	11.5	60
108	Radiative and nonradiative properties of single plasmonic nanoparticles and their assemblies. <i>Accounts of Chemical Research</i> , 2012 , 45, 1936-45	24.3	59

107	Fluorescence correlation spectroscopy: criteria for analysis in complex systems. <i>Analytical Chemistry</i> , 2009 , 81, 746-54	7.8	57
106	Medium Effect on the Electron Cooling Dynamics in Gold Nanorods and Truncated Tetrahedra. <i>Advanced Materials</i> , 2003 , 15, 393-396	24	55
105	Identification of higher order long-propagation-length surface plasmon polariton modes in chemically prepared gold nanowires. <i>ACS Nano</i> , 2012 , 6, 8105-13	16.7	53
104	Low absorption losses of strongly coupled surface plasmons in nanoparticle assemblies. Proceedings of the National Academy of Sciences of the United States of America, 2011, 108, 19879-84	11.5	49
103	Tuning the acoustic frequency of a gold nanodisk through its adhesion layer. <i>Nature Communications</i> , 2015 , 6, 7022	17.4	48
102	Turning the corner: efficient energy transfer in bent plasmonic nanoparticle chain waveguides. Nano Letters, 2013 , 13, 4779-84	11.5	46
101	Enhancing the Sensitivity of Single-Particle Photothermal Imaging with Thermotropic Liquid Crystals. <i>Journal of Physical Chemistry Letters</i> , 2012 , 3, 1393-9	6.4	46
100	Comparison of the dynamics of the primary events of bacteriorhodopsin in its trimeric and monomeric states. <i>Biophysical Journal</i> , 2002 , 83, 1557-66	2.9	46
99	Hot Holes Assist Plasmonic Nanoelectrode Dissolution. <i>Nano Letters</i> , 2019 , 19, 1301-1306	11.5	46
98	Measurement of the intensity and phase of attojoule femtosecond light pulses using Optical-Parametric-Amplification Cross-Correlation Frequency-Resolved Optical Gating. <i>Optics Express</i> , 2003 , 11, 601-9	3.3	45
97	Correlated Absorption and Scattering Spectroscopy of Individual Platinum-Decorated Gold Nanorods Reveals Strong Excitation Enhancement in the Nonplasmonic Metal. <i>ACS Nano</i> , 2017 , 11, 123	34 5 -123	35 ⁴³
96	Optomechanics of Single Aluminum Nanodisks. <i>Nano Letters</i> , 2017 , 17, 2575-2583	11.5	42
95	Some properties of spherical and rod-shaped semiconductor and metal nanocrystals. <i>Pure and Applied Chemistry</i> , 2002 , 74, 1675-1692	2.1	41
94	Single quantum dot controls a plasmonic cavity@scattering and anisotropy. <i>Proceedings of the National Academy of Sciences of the United States of America</i> , 2015 , 112, 12288-92	11.5	40
93	Anti-Stokes Emission from Hot Carriers in Gold Nanorods. <i>Nano Letters</i> , 2019 , 19, 1067-1073	11.5	38
92	Vibrational coupling in plasmonic molecules. <i>Proceedings of the National Academy of Sciences of the United States of America</i> , 2017 , 114, 11621-11626	11.5	37
91	Quadrupole-enhanced Raman scattering. ACS Nano, 2014 , 8, 9025-34	16.7	36
90	Spectroelectrochemistry of Halide Anion Adsorption and Dissolution of Single Gold Nanorods. Journal of Physical Chemistry C, 2016 , 120, 20604-20612	3.8	35

(2017-2014)

89	Influence of cross sectional geometry on surface plasmon polariton propagation in gold nanowires. <i>ACS Nano</i> , 2014 , 8, 572-80	16.7	34
88	Single-Crystalline Copper Nano-Octahedra. <i>Chemistry of Materials</i> , 2015 , 27, 8185-8188	9.6	34
87	Absorption Spectroscopy of an Individual Fano Cluster. <i>Nano Letters</i> , 2016 , 16, 6497-6503	11.5	32
86	Dye-assisted gain of strongly confined surface plasmon polaritons in silver nanowires. <i>Nano Letters</i> , 2014 , 14, 3628-33	11.5	30
85	Structure and dynamics of conjugated polymers in liquid crystalline solvents. <i>Annual Review of Physical Chemistry</i> , 2007 , 58, 565-84	15.7	30
84	Increased Intraband Transitions in Smaller Gold Nanorods Enhance Light Emission. <i>ACS Nano</i> , 2020 , 14, 15757-15765	16.7	30
83	Ultrafast Electron Dynamics in Single Aluminum Nanostructures. <i>Nano Letters</i> , 2019 , 19, 3091-3097	11.5	28
82	Accurately determining single molecule trajectories of molecular motion on surfaces. <i>Journal of Chemical Physics</i> , 2009 , 130, 164710	3.9	28
81	Femtosecond Dynamics of a Simple Merocyanine Dye: Does Deprotonation Compete with Isomerization?. <i>Journal of the American Chemical Society</i> , 2000 , 122, 6720-6726	16.4	28
80	Spectral Response of Plasmonic Gold Nanoparticles to Capacitive Charging: Morphology Effects. Journal of Physical Chemistry Letters, 2017 , 8, 2681-2688	6.4	27
79	Transfer times of electrons and holes across the interface in CdS/HgS/CdS quantum dot quantum well nanoparticles. <i>Chemical Physics Letters</i> , 2002 , 361, 446-452	2.5	27
78	Chemical Interface Damping of Surface Plasmon Resonances. <i>Accounts of Chemical Research</i> , 2021 , 54, 1950-1960	24.3	27
77	Single-Particle Emission Spectroscopy Resolves d-Hole Relaxation in Copper Nanocubes. <i>ACS Energy Letters</i> , 2019 , 4, 2458-2465	20.1	26
76	Environmental Symmetry Breaking Promotes Plasmon Mode Splitting in Gold Nanotriangles. <i>Journal of Physical Chemistry C</i> , 2018 , 122, 13259-13266	3.8	26
75	Why is the thermalization of excited electrons in semiconductor nanoparticles so rapid? Studies on CdSe nanoparticles. <i>Chemical Physics Letters</i> , 2003 , 373, 284-291	2.5	26
74	Charge Separation Effects on the Rate of Nonradiative Relaxation Processes in Quantum DotsQuantum Well Heteronanostructures. <i>Journal of Physical Chemistry A</i> , 1998 , 102, 6581-6584	2.8	26
73	Polycrystallinity of Lithographically Fabricated Plasmonic Nanostructures Dominates Their Acoustic Vibrational Damping. <i>Nano Letters</i> , 2018 , 18, 3494-3501	11.5	25
72	Optical characterization of chiral plasmonic nanostructures. <i>Journal of Photochemistry and Photobiology C: Photochemistry Reviews</i> , 2017 , 32, 40-57	16.4	23

71	Improved analysis for determining diffusion coefficients from short, single-molecule trajectories with photoblinking. <i>Langmuir</i> , 2013 , 29, 228-34	4	23
70	Room temperature optical gain in CdSe nanorod solutions. <i>Journal of Applied Physics</i> , 2002 , 92, 6799-68	3 0 35	23
69	Influence of the Substrate on the Mobility of Individual Nanocars. <i>Journal of Physical Chemistry Letters</i> , 2010 , 1, 3288-3291	6.4	22
68	Picosecond Self-Induced Thermal Lensing from Colloidal Silver Nanodisks. <i>Journal of Physical Chemistry B</i> , 2004 , 108, 5230-5234	3.4	22
67	Interfacial States Cause Equal Decay of Plasmons and Hot Electrons at Gold-Metal Oxide Interfaces. <i>Nano Letters</i> , 2020 , 20, 3338-3343	11.5	21
66	Laser-Induced Spectral Hole-Burning through a Broadband Distribution of Au Nanorods. <i>Journal of Physical Chemistry C</i> , 2016 , 120, 20518-20524	3.8	21
65	Seeing double: coupling between substrate image charges and collective plasmon modes in self-assembled nanoparticle superstructures. <i>ACS Nano</i> , 2011 , 5, 4892-901	16.7	21
64	Nematic solvation of segmented polymer chains. <i>Nano Letters</i> , 2005 , 5, 1757-60	11.5	21
63	Exploring the Relationship between Plasmon Damping and Luminescence in Lithographically Prepared Gold Nanorods. <i>ACS Photonics</i> , 2018 , 5, 3541-3549	6.3	20
62	Controlled Overgrowth of Five-Fold Concave Nanoparticles into Plasmonic Nanostars and Their Single-Particle Scattering Properties. <i>ACS Nano</i> , 2019 , 13, 10113-10128	16.7	20
61	DNA-Enabled Chiral Gold Nanoparticle-Chromophore Hybrid Structure with Resonant Plasmon-Exciton Coupling Gives Unusual and Strong Circular Dichroism. <i>Journal of the American Chemical Society</i> , 2019 , 141, 19336-19341	16.4	20
60	Optimization of Spectral and Spatial Conditions to Improve Super-Resolution Imaging of Plasmonic Nanoparticles. <i>Journal of Physical Chemistry Letters</i> , 2017 , 8, 299-306	6.4	19
59	Snapshot Hyperspectral Imaging (SHI) for Revealing Irreversible and Heterogeneous Plasmonic Processes. <i>Journal of Physical Chemistry C</i> , 2018 , 122, 6865-6875	3.8	19
58	Impurity-induced plasmon damping in individual cobalt-doped hollow Au nanoshells. <i>Journal of Physical Chemistry B</i> , 2014 , 118, 14056-61	3.4	19
57	Gold Nanotetrapods with Unique Topological Structure and Ultranarrow Plasmonic Band as Multifunctional Therapeutic Agents. <i>Journal of Physical Chemistry Letters</i> , 2019 , 10, 4505-4510	6.4	18
56	Plasmonic polymers unraveled through single particle spectroscopy. <i>Nanoscale</i> , 2014 , 6, 11451-61	7.7	17
55	Measuring the Hydrodynamic Size of Nanoparticles Using Fluctuation Correlation Spectroscopy. <i>Annual Review of Physical Chemistry</i> , 2016 , 67, 489-514	15.7	17
54	Patterning of supported gold monolayers via chemical lift-off lithography. <i>Beilstein Journal of Nanotechnology</i> , 2017 , 8, 2648-2661	3	15

53	Particle Plasmons as Dipole Antennas: State Representation of Relative Observables. <i>Journal of Physical Chemistry C</i> , 2018 , 122, 19116-19123	3.8	15
52	Active Far-Field Control of the Thermal Near-Field Plasmon Hybridization. ACS Nano, 2019, 13, 9655-96	63 6.7	15
51	Single molecule spectroscopy of conjugated polymer chains in an electric field-aligned liquid crystal. <i>Journal of Physical Chemistry B</i> , 2008 , 112, 448-53	3.4	15
50	Determination of the localization times of electrons and holes in the HgS well in a CdS/HgS/CdS quantum dotquantum well nanoparticle. <i>Physical Review B</i> , 2002 , 66,	3.3	15
49	Synthesis of fluorescent dye-tagged nanomachines for single-molecule fluorescence spectroscopy. Journal of Organic Chemistry, 2010 , 75, 6631-43	4.2	14
48	Orthogonal orientations for solvation of polymer molecules in smectic solvents. <i>Physical Review Letters</i> , 2006 , 96, 017801	7.4	14
47	Imaging and Spectroscopy of Single Metal Nanostructure Absorption. <i>Langmuir</i> , 2018 , 34, 3775-3786	4	13
46	Chain-length dependent nematic ordering of conjugated polymers in a liquid crystal solvent. <i>Journal of the American Chemical Society</i> , 2008 , 130, 12262-3	16.4	12
45	Exploiting Evanescent Field Polarization for Giant Chiroptical Modulation from Achiral Gold Half-Rings. <i>ACS Nano</i> , 2018 , 12, 11657-11663	16.7	12
44	Nanophotonic Approaches for Chirality Sensing. <i>ACS Nano</i> , 2021 , 15, 15538-15566	16.7	11
44	Nanophotonic Approaches for Chirality Sensing. <i>ACS Nano</i> , 2021 , 15, 15538-15566 Single-particle scattering spectroscopy: fundamentals and applications. <i>Nanophotonics</i> , 2021 , 10, 1621-	,	11
		-1 6.5 5	11
43	Single-particle scattering spectroscopy: fundamentals and applications. <i>Nanophotonics</i> , 2021 , 10, 1621-	-1 6.5 5	11
43	Single-particle scattering spectroscopy: fundamentals and applications. <i>Nanophotonics</i> , 2021 , 10, 1621- Scattering Properties of Individual Hedgehog Particles. <i>Journal of Physical Chemistry C</i> , 2018 , 122, 1201 Au@CdSe heteroepitaxial nanorods: An example of metal nanorods fully covered by a semiconductor shell with strong photo-induced interfacial charge transfer effects. <i>Journal of</i>	1 6.5 5	11 2110
43 42 41	Single-particle scattering spectroscopy: fundamentals and applications. <i>Nanophotonics</i> , 2021 , 10, 1621- Scattering Properties of Individual Hedgehog Particles. <i>Journal of Physical Chemistry C</i> , 2018 , 122, 1201 Au@CdSe heteroepitaxial nanorods: An example of metal nanorods fully covered by a semiconductor shell with strong photo-induced interfacial charge transfer effects. <i>Journal of Colloid and Interface Science</i> , 2018 , 532, 143-152 Fluorescence Correlation Spectroscopy of Magnetite Nanocrystal Diffusion. <i>Journal of Physical</i>	-1 6.5 5 -1 5 3.12:02	11 21/10
43 42 41 40	Single-particle scattering spectroscopy: fundamentals and applications. <i>Nanophotonics</i> , 2021 , 10, 1621- Scattering Properties of Individual Hedgehog Particles. <i>Journal of Physical Chemistry C</i> , 2018 , 122, 1201 Au@CdSe heteroepitaxial nanorods: An example of metal nanorods fully covered by a semiconductor shell with strong photo-induced interfacial charge transfer effects. <i>Journal of Colloid and Interface Science</i> , 2018 , 532, 143-152 Fluorescence Correlation Spectroscopy of Magnetite Nanocrystal Diffusion. <i>Journal of Physical Chemistry C</i> , 2009 , 113, 844-848 Electrodissolution Inhibition of Gold Nanorods with Oxoanions. <i>Journal of Physical Chemistry C</i> ,	9·3 3.8	11 240 10
43 42 41 40 39	Single-particle scattering spectroscopy: fundamentals and applications. <i>Nanophotonics</i> , 2021 , 10, 1621- Scattering Properties of Individual Hedgehog Particles. <i>Journal of Physical Chemistry C</i> , 2018 , 122, 1201 Au@CdSe heteroepitaxial nanorods: An example of metal nanorods fully covered by a semiconductor shell with strong photo-induced interfacial charge transfer effects. <i>Journal of Colloid and Interface Science</i> , 2018 , 532, 143-152 Fluorescence Correlation Spectroscopy of Magnetite Nanocrystal Diffusion. <i>Journal of Physical Chemistry C</i> , 2009 , 113, 844-848 Electrodissolution Inhibition of Gold Nanorods with Oxoanions. <i>Journal of Physical Chemistry C</i> , 2019 , 123, 13983-13992 Acoustic Vibrations of Al Nanocrystals: Size, Shape, and Crystallinity Revealed by Single-Particle	9·3 3.8	11 24 to 10 10 9

35	Mechanistic study of bleach-imaged plasmon propagation (BlIPP). <i>Journal of Physical Chemistry B</i> , 2013 , 117, 4611-7	3.4	9
34	PSF Distortion in Dyellasmonic Nanomaterial Interactions: Friend or Foe?. ACS Photonics, 2019, 6, 699-	7 6 83	9
33	Synthesis of a fluorescent BODIPY-tagged ROMP catalyst and initial polymerization-propelled diffusion studies. <i>Tetrahedron</i> , 2015 , 71, 5965-5972	2.4	8
32	Polarized evanescent waves reveal trochoidal dichroism. <i>Proceedings of the National Academy of Sciences of the United States of America</i> , 2020 , 117, 16143-16148	11.5	8
31	Plasmon Energy Transfer in Hybrid Nanoantennas. ACS Nano, 2021, 15, 9522-9530	16.7	8
30	Light emission from plasmonic nanostructures. <i>Journal of Chemical Physics</i> , 2021 , 155, 060901	3.9	8
29	Quantitative Analysis of Nanorod Aggregation and Morphology from Scanning Electron Micrographs Using SEMseg. <i>Journal of Physical Chemistry A</i> , 2020 , 124, 5262-5270	2.8	7
28	Nanoelectrode-emitter spectral overlap amplifies surface enhanced electrogenerated chemiluminescence. <i>Journal of Chemical Physics</i> , 2019 , 151, 144712	3.9	7
27	Anisotropic diffusion of elongated and aligned polymer chains in a nematic solvent. <i>Journal of Physical Chemistry B</i> , 2006 , 110, 19799-803	3.4	7
26	Tuning Electrogenerated Chemiluminescence Intensity Enhancement Using Hexagonal Lattice Arrays of Gold Nanodisks. <i>Journal of Physical Chemistry Letters</i> , 2021 , 12, 2516-2522	6.4	7
25	Nano-optics from sensing to waveguiding 2009 , 213-220		6
24	Nanoscale Surface-Induced Unfolding of Single Fibronectin Is Restricted by Serum Albumin Crowding. <i>Journal of Physical Chemistry Letters</i> , 2020 , 11, 1170-1177	6.4	5
23	Detailed mechanism for the orthogonal polarization switching of gold nanorod plasmons. <i>Physical Chemistry Chemical Physics</i> , 2013 , 15, 4195-204	3.6	5
22	Acoustic Vibrations and Energy Dissipation Mechanisms for Lithographically Fabricated Plasmonic Nanostructures Revealed by Single-Particle Transient Extinction Spectroscopy. <i>Journal of Physical Chemistry C</i> , 2021 , 125, 1621-1636	3.8	5
21	Modal interference in spiky nanoshells. <i>Optics Express</i> , 2015 , 23, 11290-311	3.3	4
20	A Kirchhoff solution to plasmon hybridization. <i>Applied Physics B: Lasers and Optics</i> , 2013 , 113, 519-525	1.9	4
19	Plasmonic Materials: A Plethora of Plasmonics from the Laboratory for Nanophotonics at Rice University (Adv. Mater. 36/2012). <i>Advanced Materials</i> , 2012 , 24, 4774-4774	24	4
18	Numerical simulations of optical parametric amplification cross-correlation frequency-resolved optical gating. <i>Journal of the Optical Society of America B: Optical Physics</i> , 2006 , 23, 318	1.7	4

LIST OF PUBLICATIONS

17	Single-Particle Hyperspectral Imaging Reveals Kinetics of Silver Ion Leaching from Alloy Nanoparticles. <i>ACS Nano</i> , 2021 , 15, 8363-8375	16.7	4
16	Machine-Learned Decision Trees for Predicting Gold Nanorod Sizes from Spectra. <i>Journal of Physical Chemistry C</i> , 2021 , 125, 19353-19361	3.8	4
15	Wavelength-Dependent Photothermal Imaging Probes Nanoscale Temperature Differences among Subdiffraction Coupled Plasmonic Nanorods. <i>Nano Letters</i> , 2021 , 21, 5386-5393	11.5	2
14	Biological applications of electromagnetically active nanoparticles. <i>Journal Physics D: Applied Physics</i> , 2017 , 50, 200201	3	1
13	The Periodic Table. Journal of Physical Chemistry A, 2019 , 123, 5837-5848	2.8	1
12	The JPC Periodic Table. <i>Journal of Physical Chemistry C</i> , 2019 , 123, 17063-17074	3.8	1
11	The JPC Periodic Table. <i>Journal of Physical Chemistry Letters</i> , 2019 , 10, 4051-4062	6.4	1
10	Spectroscopic signatures of plasmon-induced charge transfer in gold nanorods <i>Journal of Chemical Physics</i> , 2022 , 156, 064702	3.9	1
9	Toward Quantitative Nanothermometry Using Single-Molecule Counting. <i>Journal of Physical Chemistry B</i> , 2021 , 125, 12197-12205	3.4	1
8	Extrinsic Trochoidal Dichroism is Modulated by Nanoparticle Symmetry. <i>Journal of Physical Chemistry C</i> , 2021 , 125, 4092-4101	3.8	1
7	Naturally Occurring Proteins Direct Chiral Nanorod Aggregation. <i>Journal of Physical Chemistry C</i> , 2022 , 126, 2656-2668	3.8	O
6	Coupled-Dipole Modeling and Experimental Characterization of Geometry-Dependent Trochoidal Dichroism in Nanorod Trimers. <i>ACS Photonics</i> , 2021 , 8, 1159-1168	6.3	О
5	Surface Plasmons as Versatile Analytical Tools. <i>Journal of Physical Chemistry Letters</i> , 2014 , 5, 3007-8	6.4	
4	Wide-field four-channel fluorescence imager for biological applications. <i>Journal of Biomedical Optics</i> , 2010 , 15, 026016	3.5	
3	Measurements of Ultracomplex and Ultraweak Pulses with FROG. <i>Springer Series in Optical Sciences</i> , 2004 , 135-141	0.5	
2	Light Capture and Energy Conversion in Plasmonic-Polymeric Hybrid Nanoelectrodes. <i>ECS Meeting Abstracts</i> , 2021 , MA2021-01, 1925-1925	O	
1	Heterogeneity and Hysteresis in the Polymer Collapse of Single CoreBhell Stimuli-Responsive Plasmonic Nanohybrids. <i>Journal of Physical Chemistry C</i> , 2021 , 125, 18270-18278	3.8	