Wensheng Yu

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/468462/publications.pdf

Version: 2024-02-01

516710 642732 40 641 16 23 citations h-index g-index papers 40 40 40 674 docs citations times ranked citing authors all docs

#	Article	IF	CITATIONS
1	Discovery and SAR of hydantoin TACE inhibitors. Bioorganic and Medicinal Chemistry Letters, 2010, 20, 1877-1880.	2.2	48
2	Discovery of Potent and Orally Available Bicyclo[1.1.1]pentane-Derived Indoleamine-2,3-dioxygenase 1 (IDO1) Inhibitors. ACS Medicinal Chemistry Letters, 2020, 11, 1548-1554.	2.8	44
3	Discovery of Ruzasvir (MK-8408): A Potent, Pan-Genotype HCV NS5A Inhibitor with Optimized Activity against Common Resistance-Associated Polymorphisms. Journal of Medicinal Chemistry, 2017, 60, 290-306.	6.4	42
4	Discovery of Amino-cyclobutarene-derived Indoleamine-2,3-dioxygenase 1 (IDO1) Inhibitors for Cancer Immunotherapy. ACS Medicinal Chemistry Letters, 2019, 10, 1530-1536.	2.8	38
5	Strategic Incorporation of Polarity in Heme-Displacing Inhibitors of Indoleamine-2,3-dioxygenase-1 (IDO1). ACS Medicinal Chemistry Letters, 2020, 11, 550-557.	2.8	28
6	Discovery of Highly Selective and Potent HDAC3 Inhibitors Based on a 2-Substituted Benzamide Zinc Binding Group. ACS Medicinal Chemistry Letters, 2020, 11, 2476-2483.	2.8	27
7	The discovery of novel tartrate-based TNF-α converting enzyme (TACE) inhibitors. Bioorganic and Medicinal Chemistry Letters, 2010, 20, 1189-1193.	2.2	26
8	Discovery of Chromane Containing Hepatitis C Virus (HCV) NS5A Inhibitors with Improved Potency against Resistance-Associated Variants. Journal of Medicinal Chemistry, 2016, 59, 10228-10243.	6.4	26
9	Biaryl substituted hydantoin compounds as TACE inhibitors. Bioorganic and Medicinal Chemistry Letters, 2010, 20, 5286-5289.	2.2	23
10	Discovery of silyl proline containing HCV NS5A inhibitors with pan-genotype activity: SAR development. Bioorganic and Medicinal Chemistry Letters, 2016, 26, 1475-1479.	2.2	21
11	Selective Class I HDAC Inhibitors Based on Aryl Ketone Zinc Binding Induce HIV-1 Protein for Clearance. ACS Medicinal Chemistry Letters, 2020, 11, 1476-1483.	2.8	21
12	Novel TNF-α converting enzyme (TACE) inhibitors as potential treatment for inflammatory diseases. Bioorganic and Medicinal Chemistry Letters, 2010, 20, 7283-7287.	2.2	20
13	Discovery of ethyl ketone-based HDACs 1, 2, and 3 selective inhibitors for HIV latency reactivation. Bioorganic and Medicinal Chemistry Letters, 2020, 30, 127197.	2.2	19
14	Discovery of fused tricyclic core containing HCV NS5A inhibitors with pan-genotype activity. Bioorganic and Medicinal Chemistry Letters, 2016, 26, 3158-3162.	2.2	17
15	Alkyl substituted aminal derivatives of HCV NS5A inhibitor MK-8742. Bioorganic and Medicinal Chemistry Letters, 2016, 26, 3800-3805.	2.2	17
16	Discovery of novel BTK inhibitors with carboxylic acids. Bioorganic and Medicinal Chemistry Letters, 2017, 27, 1471-1477.	2.2	17
17	Potent, non-covalent reversible BTK inhibitors with 8-amino-imidazo[1,5-a]pyrazine core featuring 3-position bicyclic ring substitutes. Bioorganic and Medicinal Chemistry Letters, 2020, 30, 127390.	2.2	16
18	Matched and mixed cap derivatives in the tetracyclic indole class of HCV NS5A inhibitors. Bioorganic and Medicinal Chemistry Letters, 2016, 26, 4106-4111.	2.2	15

#	Article	IF	CITATIONS
19	Aryl or heteroaryl substituted aminal derivatives of HCV NS5A inhibitor MK-8742. Bioorganic and Medicinal Chemistry Letters, 2016, 26, 3414-3420.	2.2	15
20	Development of a selective HDAC inhibitor aimed at reactivating the HIV latent reservoir. Bioorganic and Medicinal Chemistry Letters, 2020, 30, 127367.	2.2	14
21	Carbamate and <i>N</i> -Pyrimidine Mitigate Amide Hydrolysis: Structure-Based Drug Design of Tetrahydroquinoline IDO1 Inhibitors. ACS Medicinal Chemistry Letters, 2021, 12, 389-396.	2.8	14
22	Alternative core development around the tetracyclic indole class of HCV NS5A inhibitors. Bioorganic and Medicinal Chemistry Letters, 2016, 26, 5132-5137.	2.2	13
23	Substituted tetracyclic indole core derivatives of HCV NS5A inhibitor MK-8742. Bioorganic and Medicinal Chemistry Letters, 2016, 26, 4851-4856.	2.2	13
24	Structure–activity relationships of proline modifications around the tetracyclic-indole class of NS5A inhibitors. Bioorganic and Medicinal Chemistry Letters, 2016, 26, 5354-5360.	2.2	12
25	Discovery of MK-6169, a Potent Pan-Genotype Hepatitis C Virus NS5A Inhibitor with Optimized Activity against Common Resistance-Associated Substitutions. Journal of Medicinal Chemistry, 2018, 61, 3984-4003.	6.4	12
26	Discovery of potent macrocyclic HCV NS5A inhibitors. Bioorganic and Medicinal Chemistry Letters, 2016, 26, 3793-3799.	2.2	10
27	A high-yielding method for the preparation of isoxazolopyridin-3-amine derivatives. Green Chemistry, 2016, 18, 4941-4946.	9.0	8
28	Fused bi-heteroaryl substituted hydantoin compounds as TACE inhibitors. Bioorganic and Medicinal Chemistry Letters, 2017, 27, 3037-3042.	2.2	8
29	Scalable Preparation of 4,4-Disubstituted Six-Membered CyclicÂSulfones. Organic Letters, 2021, 23, 943-947.	4.6	8
30	Discovery of Ethyl Ketone-Based Highly Selective HDACs 1, 2, 3 Inhibitors for HIV Latency Reactivation with Minimum Cellular Potency Serum Shift and Reduced hERG Activity. Journal of Medicinal Chemistry, 2021, 64, 4709-4729.	6.4	7
31	Discovery of IDO1 inhibitors containing a decahydroquinoline, decahydro-1,6-naphthyridine, or octahydro-1H-pyrrolo[3,2-c]pyridine scaffold. Bioorganic and Medicinal Chemistry Letters, 2021, 49, 128314.	2.2	7
32	Discovery of macrocyclic HDACs 1, 2, and 3 selective inhibitors for HIV latency reactivation. Bioorganic and Medicinal Chemistry Letters, 2021, 47, 128168.	2.2	6
33	Development of a prodrug of hydantoin based TACE inhibitor. Bioorganic and Medicinal Chemistry Letters, 2017, 27, 3704-3708.	2.2	5
34	MK-8325: A silyl proline-containing NS5A inhibitor with pan-genotype activity for treatment of HCV. Bioorganic and Medicinal Chemistry Letters, 2018, 28, 1954-1957.	2.2	5
35	Discovery of novel pan-genotypic HCV NS5A inhibitors containing a novel tetracyclic core. Bioorganic and Medicinal Chemistry Letters, 2019, 29, 700-706.	2.2	4
36	SAR towards indoline and 3-azaindoline classes of IDO1 inhibitors. Bioorganic and Medicinal Chemistry Letters, 2021, 47, 128214.	2.2	4

#	Article	IF	CITATION
37	Selective N7 Alkylation of 7-Azaindazoles. Journal of Organic Chemistry, 2020, 85, 7558-7564.	3.2	3
38	Mild Condition for the Deoxygenation of \hat{l}_{\pm} -Heteroaryl-Substituted Methanol Derivatives. Journal of Organic Chemistry, 2021, 86, 5560-5567.	3.2	3
39	In Vitro Pharmacokinetic/Pharmacodynamic Modeling of HIV Latency Reversal by Novel HDAC Inhibitors Using an Automated Platform. SLAS Discovery, 2021, 26, 642-654.	2.7	3
40	In Vitro Antiviral Profile of Ruzasvir, a Potent and Pangenotype Inhibitor of Hepatitis C Virus NS5A. Antimicrobial Agents and Chemotherapy, 2018, 62, .	3.2	2