Mengxi Wu

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4684408/publications.pdf Version: 2024-02-01

MENCYI WU

#	Article	IF	CITATIONS
1	A Super‧tretchable and Highly Sensitive Carbon Nanotube Capacitive Strain Sensor for Wearable Applications and Soft Robotics. Advanced Materials Technologies, 2022, 7, 2100769.	5.8	36
2	Harmonic acoustics for dynamic and selective particle manipulation. Nature Materials, 2022, 21, 540-546.	27.5	66
3	Recent Advances in Software Tools for More Generic and Precise Intact Glycopeptide Analysis. Molecular and Cellular Proteomics, 2021, 20, 100060.	3.8	71
4	OGP: A Repository of Experimentally Characterized O-glycoproteins to Facilitate Studies on O-glycosylation. Genomics, Proteomics and Bioinformatics, 2021, 19, 611-618.	6.9	12
5	Acoustofluidic separation enables early diagnosis of traumatic brain injury based on circulating exosomes. Microsystems and Nanoengineering, 2021, 7, 20.	7.0	22
6	Effective Enrichment Strategy Using Boronic Acid-Functionalized Mesoporous Graphene–Silica Composites for Intact N- and O-Linked Glycopeptide Analysis in Human Serum. Analytical Chemistry, 2021, 93, 6682-6691.	6.5	29
7	Ultrasensitive Multiparameter Phenotyping of Rare Cells Using an Integrated Digitalâ€Molecularâ€Counting Microfluidic Well Plate. Small, 2021, 17, e2101743.	10.0	4
8	GproDIA enables data-independent acquisition glycoproteomics with comprehensive statistical control. Nature Communications, 2021, 12, 6073.	12.8	23
9	An ultrafast and highly efficient enrichment method for both N-Glycopeptides and N-Glycans by bacterial cellulose. Analytica Chimica Acta, 2020, 1140, 60-68.	5.4	10
10	A disposable acoustofluidic chip for nano/microparticle separation using unidirectional acoustic transducers. Lab on A Chip, 2020, 20, 1298-1308.	6.0	76
11	Development of a Computational Tool for Automated Interpretation of Intact <i>O</i> -Glycopeptide Tandem Mass Spectra from Single Proteins. Analytical Chemistry, 2020, 92, 6777-6784.	6.5	9
12	Acoustofluidic Synthesis of Particulate Nanomaterials. Advanced Science, 2019, 6, 1900913.	11.2	49
13	Plastic-based acoustofluidic devices for high-throughput, biocompatible platelet separation. Lab on A Chip, 2019, 19, 394-402.	6.0	34
14	Wave number–spiral acoustic tweezers for dynamic and reconfigurable manipulation of particles and cells. Science Advances, 2019, 5, eaau6062.	10.3	146
15	Acoustofluidic separation of cells and particles. Microsystems and Nanoengineering, 2019, 5, 32.	7.0	268
16	A multi-parallel N-glycopeptide enrichment strategy for high-throughput and in-depth mapping of the N-glycoproteome in metastatic human hepatocellular carcinoma cell lines. Talanta, 2019, 199, 254-261.	5.5	12
17	Separating extracellular vesicles and lipoproteins <i>via</i> acoustofluidics. Lab on A Chip, 2019, 19, 1174-1182.	6.0	81
18	Clinical utility of non-EpCAM based circulating tumor cell assays. Advanced Drug Delivery Reviews, 2018, 125, 132-142.	13.7	26

Mengxi Wu

#	Article	IF	CITATIONS
19	Parametric optimization of electric field strength for cancer electrochemotherapy on a chip-based model. Theranostics, 2018, 8, 358-368.	10.0	9
20	Standing Surface Acoustic Wave (SSAW)â€Based Fluorescenceâ€Activated Cell Sorter. Small, 2018, 14, e1801996.	10.0	83
21	Circulating Tumor Cell Phenotyping via Highâ€Throughput Acoustic Separation. Small, 2018, 14, e1801131.	10.0	115
22	High-throughput cell focusing and separation <i>via</i> acoustofluidic tweezers. Lab on A Chip, 2018, 18, 3003-3010.	6.0	55
23	Enriching Nanoparticles <i>via</i> Acoustofluidics. ACS Nano, 2017, 11, 603-612.	14.6	142
24	Acoustic Separation of Nanoparticles in Continuous Flow. Advanced Functional Materials, 2017, 27, 1606039.	14.9	106
25	Isolation of exosomes from whole blood by integrating acoustics and microfluidics. Proceedings of the United States of America, 2017, 114, 10584-10589.	7.1	633
26	High-throughput acoustic separation of platelets from whole blood. Lab on A Chip, 2016, 16, 3466-3472.	6.0	106
27	Electroporation on microchips: the harmful effects of pH changes and scaling down. Scientific Reports, 2016, 5, 17817.	3.3	42
28	Acoustofluidic coating of particles and cells. Lab on A Chip, 2016, 16, 4366-4372.	6.0	27
29	A Flow-Through Cell Electroporation Device for Rapidly and Efficiently Transfecting Massive Amounts of Cells in vitro and ex vivo. Scientific Reports, 2016, 6, 18469.	3.3	37
30	Rapid formation of size-controllable multicellular spheroids via 3D acoustic tweezers. Lab on A Chip, 2016, 16, 2636-2643.	6.0	147
31	Reusable acoustic tweezers for disposable devices. Lab on A Chip, 2015, 15, 4517-4523.	6.0	60
32	A flow-through electroporation device utilizing Dean Vortex to enhance cell viability. , 2015, , .		2
33	3D ICE printing as a fabrication technology of microfluidics with pre-sealed reagents. , 2014, , .		7
34	A symmetrical hyperbolic formatted microchip for rapid optimization of electroporation. , 2013, , .		1
35	Method for Electric Parametric Characterization and Optimization of Electroporation on a Chip. Analytical Chemistry, 2013, 85, 4483-4491.	6.5	9
36	High-density distributed electrode network, a multi-functional electroporation method for delivery of molecules of different sizes. Scientific Reports, 2013, 3, 3370.	3.3	14

Mengxi Wu

#	Article	IF	CITATIONS
37	A microchip for in vitro parameter determination of cancer electrochemotherapy. , 2013, , .		3
38	An efficient and high-throughput electroporation microchip applicable for siRNA delivery. Lab on A Chip, 2011, 11, 163-172.	6.0	56
39	A portable and high efficiency system for cell electroporation under low voltage. , 2011, , .		1
40	A Laminar Flow Electroporation System for Efficient DNA and siRNA Delivery. Analytical Chemistry, 2011, 83, 5881-5887.	6.5	48
41	Microfluidic freeâ€flow paper electrochromatography for continuous separation of glycans. ChemElectroChem, 0, , .	3.4	0