
Weiming Yuan

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4684365/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Global profiling reveals common and distinct N6-methyladenosine (m6A) regulation of innate immune responses during bacterial and viral infections. Cell Death and Disease, 2022, 13, 234.	6.3	16
2	SARS-CoV-2 Nsp5 Demonstrates Two Distinct Mechanisms Targeting RIG-I and MAVS To Evade the Innate Immune Response. MBio, 2021, 12, e0233521.	4.1	57
3	Comment on "Central Nervous System Involvement by Severe Acute Respiratory Syndrome Coronavirus â€2 (SARSâ€CoVâ€2)― Journal of Medical Virology, 2020, 92, 1399-1400.	5.0	9
4	Editorial: NKT Cells in Cancer Immunotherapy. Frontiers in Immunology, 2020, 11, 1314.	4.8	15
5	Mathematical modeling of interaction between innate and adaptive immune responses in COVIDâ€19 and implications for viral pathogenesis. Journal of Medical Virology, 2020, 92, 1615-1628.	5.0	130
6	α-GalCer and iNKT Cell-Based Cancer Immunotherapy: Realizing the Therapeutic Potentials. Frontiers in Immunology, 2019, 10, 1126.	4.8	54
7	Transcriptional regulation of autophagy-lysosomal function in BRAF-driven melanoma progression and chemoresistance. Nature Communications, 2019, 10, 1693.	12.8	119
8	Dual Modifications of α-Galactosylceramide Synergize to Promote Activation of Human Invariant Natural Killer T Cells and Stimulate Anti-tumor Immunity. Cell Chemical Biology, 2018, 25, 571-584.e8.	5.2	27
9	Herpes Simplex Virus 1 Specifically Targets Human CD1d Antigen Presentation To Enhance Its Pathogenicity. Journal of Virology, 2018, 92, .	3.4	10
10	lÎºΒ Kinase ε Is an NFATc1 Kinase that Inhibits T Cell Immune Response. Cell Reports, 2016, 16, 405-418.	6.4	54
11	A Viral Deamidase Targets the Helicase Domain of RIG-I to Block RNA-Induced Activation. Cell Host and Microbe, 2016, 20, 770-784.	11.0	85
12	Herpes simplex virus downregulation of secretory leukocyte protease inhibitor enhances human papillomavirus type 16 infection. Journal of General Virology, 2016, 97, 422-434.	2.9	21
13	A Subset of CD8αβ+ Invariant NKT Cells in a Humanized Mouse Model. Journal of Immunology, 2015, 195, 1459-1469.	0.8	11
14	A Novel Glycolipid Antigen for NKT Cells That Preferentially Induces IFN-Î ³ Production. Journal of Immunology, 2015, 195, 924-933.	0.8	28
15	Herpes Simplex Virus 1 US3 Phosphorylates Cellular KIF3A To Downregulate CD1d Expression. Journal of Virology, 2015, 89, 6646-6655.	3.4	27
16	Akt Kinase-Mediated Checkpoint of cGAS DNA Sensing Pathway. Cell Reports, 2015, 13, 440-449.	6.4	160
17	Improving Mycobacterium bovis Bacillus Calmette-Guèrin as a Vaccine Delivery Vector for Viral Antigens by Incorporation of Glycolipid Activators of NKT Cells. PLoS ONE, 2014, 9, e108383.	2.5	24
18	Exploring the Therapeutic Potentials of iNKT Cells for Anti-HBV Treatment. Pathogens, 2014, 3, 563-576.	2.8	4

WEIMING YUAN

#	Article	IF	CITATIONS
19	Humanizing mice for the identification of novel anticancer lipids targeting iNKT cells. Oncolmmunology, 2013, 2, e25475.	4.6	2
20	Human CD1d knock-in mouse model demonstrates potent antitumor potential of human CD1d-restricted invariant natural killer T cells. Proceedings of the National Academy of Sciences of the United States of America, 2013, 110, 2963-2968.	7.1	36
21	Herpes Simplex Virus 1 Glycoprotein B and US3 Collaborate To Inhibit CD1d Antigen Presentation and NKT Cell Function. Journal of Virology, 2011, 85, 8093-8104.	3.4	65
22	Natural Lipid Ligands Associated with Human CD1d Targeted to Different Subcellular Compartments. Journal of Immunology, 2009, 182, 4784-4791.	0.8	85
23	Kinetics and Cellular Site of Glycolipid Loading Control the Outcome of Natural Killer T Cell Activation. Immunity, 2009, 30, 888-898.	14.3	159
24	Saposin B is the dominant saposin that facilitates lipid binding to human CD1d molecules. Proceedings of the National Academy of Sciences of the United States of America, 2007, 104, 5551-5556.	7.1	96
25	Herpes simplex virus evades natural killer T cell recognition by suppressing CD1d recycling. Nature	14.5	143