Xiao Zhang

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4684130/publications.pdf

Version: 2024-02-01

9254 6465 25,862 195 74 157 citations h-index g-index papers 203 203 203 28970 docs citations times ranked citing authors all docs

#	Article	IF	CITATIONS
1	Recent Advances in Ultrathin Two-Dimensional Nanomaterials. Chemical Reviews, 2017, 117, 6225-6331.	23.0	3,940
2	Low-temperature hydrogen production from water and methanol using $Pt/l\pm MoC$ catalysts. Nature, 2017, 544, 80-83.	13.7	1,090
3	Ultrathin 2D Metal–Organic Framework Nanosheets. Advanced Materials, 2015, 27, 7372-7378.	11.1	943
4	High-Throughput Synthesis of Single-Layer MoS ₂ Nanosheets as a Near-Infrared Photothermal-Triggered Drug Delivery for Effective Cancer Therapy. ACS Nano, 2014, 8, 6922-6933.	7.3	813
5	Black Phosphorus Quantum Dots. Angewandte Chemie - International Edition, 2015, 54, 3653-3657.	7. 2	594
6	Synthesis of Two-Dimensional CoS _{1.097} /Nitrogen-Doped Carbon Nanocomposites Using Metal–Organic Framework Nanosheets as Precursors for Supercapacitor Application. Journal of the American Chemical Society, 2016, 138, 6924-6927.	6.6	591
7	A Highâ€Rate and Stable Quasiâ€Solidâ€State Zincâ€Ion Battery with Novel 2D Layered Zinc Orthovanadate Array. Advanced Materials, 2018, 30, e1803181.	11.1	571
8	Solutionâ€Processed Twoâ€Dimensional MoS ₂ Nanosheets: Preparation, Hybridization, and Applications. Angewandte Chemie - International Edition, 2016, 55, 8816-8838.	7.2	557
9	Graphene Quantum Dots Coated VO ₂ Arrays for Highly Durable Electrodes for Li and Na Ion Batteries. Nano Letters, 2015, 15, 565-573.	4.5	493
10	Dual Tuning of Ni–Co–A (A = P, Se, O) Nanosheets by Anion Substitution and Holey Engineering for Efficient Hydrogen Evolution. Journal of the American Chemical Society, 2018, 140, 5241-5247.	6.6	461
11	Solutionâ€Processed Twoâ€Dimensional Metal Dichalcogenideâ€Based Nanomaterials for Energy Storage and Conversion. Advanced Materials, 2016, 28, 6167-6196.	11.1	438
12	Phase engineering of nanomaterials. Nature Reviews Chemistry, 2020, 4, 243-256.	13.8	438
13	Threeâ€Dimensional Architectures Constructed from Transitionâ€Metal Dichalcogenide Nanomaterials for Electrochemical Energy Storage and Conversion. Angewandte Chemie - International Edition, 2018, 57, 626-646.	7. 2	398
14	Growth of Au Nanoparticles on 2D Metalloporphyrinic Metalâ€Organic Framework Nanosheets Used as Biomimetic Catalysts for Cascade Reactions. Advanced Materials, 2017, 29, 1700102.	11.1	384
15	In Situ Grown Epitaxial Heterojunction Exhibits Highâ€Performance Electrocatalytic Water Splitting. Advanced Materials, 2018, 30, e1705516.	11.1	375
16	All Metal Nitrides Solidâ€State Asymmetric Supercapacitors. Advanced Materials, 2015, 27, 4566-4571.	11.1	371
17	Molecular engineering of dispersed nickel phthalocyanines on carbon nanotubes for selective CO2 reduction. Nature Energy, 2020, 5, 684-692.	19.8	365
18	General synthesis of single-atom catalysts with high metal loading using graphene quantum dots. Nature Chemistry, 2021, 13, 887-894.	6.6	362

#	Article	IF	CITATIONS
19	Preparation of Highâ€Percentage 1Tâ€Phase Transition Metal Dichalcogenide Nanodots for Electrochemical Hydrogen Evolution. Advanced Materials, 2018, 30, 1705509.	11.1	341
20	Oneâ€Pot Synthesis of Highly Anisotropic Fiveâ€Foldâ€Twinned PtCu Nanoframes Used as a Bifunctional Electrocatalyst for Oxygen Reduction and Methanol Oxidation. Advanced Materials, 2016, 28, 8712-8717.	11.1	336
21	Hybrid Fibers Made of Molybdenum Disulfide, Reduced Graphene Oxide, and Multiâ€Walled Carbon Nanotubes for Solidâ€State, Flexible, Asymmetric Supercapacitors. Angewandte Chemie - International Edition, 2015, 54, 4651-4656.	7.2	334
22	Singleâ€Layer Transition Metal Dichalcogenide Nanosheetâ€Based Nanosensors for Rapid, Sensitive, and Multiplexed Detection of DNA. Advanced Materials, 2015, 27, 935-939.	11.1	322
23	Up-Conversion Cell Imaging and pH-Induced Thermally Controlled Drug Release from NaYF ₄ :Yb ³⁺ /Er ³⁺ @Hydrogel Core–Shell Hybrid Microspheres. ACS Nano, 2012, 6, 3327-3338.	7.3	308
24	Novel structured transition metal dichalcogenide nanosheets. Chemical Society Reviews, 2018, 47, 3301-3338.	18.7	303
25	Structural Engineering of 2D Nanomaterials for Energy Storage and Catalysis. Advanced Materials, 2018, 30, e1706347.	11.1	297
26	Lithiation-induced amorphization of Pd3P2S8 for highly efficient hydrogen evolution. Nature Catalysis, 2018, 1, 460-468.	16.1	247
27	Smart MoS ₂ /Fe ₃ O ₄ Nanotheranostic for Magnetically Targeted Photothermal Therapy Guided by Magnetic Resonance/Photoacoustic Imaging. Theranostics, 2015, 5, 931-945.	4.6	234
28	Core-shell carbon materials derived from metal-organic frameworks as an efficient oxygen bifunctional electrocatalyst. Nano Energy, 2016, 30, 368-378.	8.2	229
29	Crystal phase-based epitaxial growth of hybrid noble metal nanostructures on 4H/fcc Au nanowires. Nature Chemistry, 2018, 10, 456-461.	6.6	220
30	Multifunctional Upâ€Converting Nanocomposites with Smart Polymer Brushes Gated Mesopores for Cell Imaging and Thermo/pH Dualâ€Responsive Drug Controlled Release. Advanced Functional Materials, 2013, 23, 4067-4078.	7.8	209
31	Conductive Graphene Fibers for Wire-Shaped Supercapacitors Strengthened by Unfunctionalized Few-Walled Carbon Nanotubes. ACS Nano, 2015, 9, 1352-1359.	7.3	193
32	A Facile and Universal Topâ€Down Method for Preparation of Monodisperse Transitionâ€Metal Dichalcogenide Nanodots. Angewandte Chemie - International Edition, 2015, 54, 5425-5428.	7.2	185
33	Electric field effect in multilayer Cr ₂ Ge ₂ Te ₆ : a ferromagnetic 2D material. 2D Materials, 2017, 4, 024009.	2.0	173
34	Two-dimensional transition metal dichalcogenide nanomaterials for biosensing applications. Materials Chemistry Frontiers, 2017, 1, 24-36.	3.2	173
35	TPGS-stabilized NaYbF4:Er upconversion nanoparticles for dual-modal fluorescent/CT imaging and anticancer drug delivery to overcome multi-drug resistance. Biomaterials, 2015, 40, 107-116.	5.7	172
36	Coating Two-Dimensional Nanomaterials with Metal–Organic Frameworks. ACS Nano, 2014, 8, 8695-8701.	7.3	168

#	Article	IF	Citations
37	Tunable multicolor and bright white emission of one-dimensional NaLuF4:Yb3+,Ln3+ (Ln = Er, Tm, Ho,) Tj ETQq1	1 0.784314 6.7	rgBT /Ove
38	High-performance room-temperature sodium–sulfur battery enabled by electrocatalytic sodium polysulfides full conversion. Energy and Environmental Science, 2020, 13, 562-570.	15.6	163
39	Upâ€Conversion Luminescent and Porous NaYF ₄ :Yb ³⁺ , Er ³⁺ @SiO ₂ Nanocomposite Fibers for Antiâ€Cancer Drug Delivery and Cell Imaging. Advanced Functional Materials, 2012, 22, 2713-2722.	7.8	145
40	Lightweight, Fireâ€Retardant, and Antiâ€Compressed Honeycombedâ€Like Carbon Aerogels for Thermal Management and Highâ€Efficiency Electromagnetic Absorbing Properties. Small, 2021, 17, e2102032.	5.2	141
41	Thickness-independent scalable high-performance Li-S batteries with high areal sulfur loading via electron-enriched carbon framework. Nature Communications, 2021, 12, 4519.	5.8	139
42	Peroxidase-like activity of MoS ₂ nanoflakes with different modifications and their application for H ₂ O ₂ and glucose detection. Journal of Materials Chemistry B, 2018, 6, 487-498.	2.9	130
43	Preparation of Singleâ€Layer MoS ₂ <i></i> >/sub>>Se _{2(1â€} <i>_{<}</i> _{_{_{_{Highâ€Concentration Metallic 1T Phase, Small, 2016, 12, 1866-1874.}}}}	5.2	126
44	Self-Assembled Chiral Nanofibers from Ultrathin Low-Dimensional Nanomaterials. Journal of the American Chemical Society, 2015, 137, 1565-1571.	6.6	123
45	Confined Synthesis of 2D Nanostructured Materials toward Electrocatalysis. Advanced Energy Materials, 2020, 10, 1900486.	10.2	123
46	Fabrication of Ultralong Hybrid Microfibers from Nanosheets of Reduced Graphene Oxide and Transitionâ∈Metal Dichalcogenides and their Application as Supercapacitors. Angewandte Chemie - International Edition, 2014, 53, 12576-12580.	7.2	119
47	Conductive CuCoâ€Based Bimetal Organic Framework for Efficient Hydrogen Evolution. Advanced Materials, 2021, 33, e2106781.	11.1	116
48	Double-Network Nanostructured Hydrogel-Derived Ultrafine Sn–Fe Alloy in Three-Dimensional Carbon Framework for Enhanced Lithium Storage. Nano Letters, 2018, 18, 3193-3198.	4.5	113
49	Phase-Selective Epitaxial Growth of Heterophase Nanostructures on Unconventional 2H-Pd Nanoparticles. Journal of the American Chemical Society, 2020, 142, 18971-18980.	6.6	111
50	Mussel-inspired one-pot synthesis of transition metal and nitrogen co-doped carbon (M/N–C) as efficient oxygen catalysts for Zn-air batteries. Nanoscale, 2016, 8, 5067-5075.	2.8	109
51	Metal organic framework-derived three-dimensional graphene-supported nitrogen-doped carbon nanotube spheres for electromagnetic wave absorption with ultralow filler mass loading. Carbon, 2019, 155, 233-242.	5.4	109
52	Promoting Transport Kinetics in Li-lon Battery with Aligned Porous Electrode Architectures. Nano Letters, 2019, 19, 8255-8261.	4.5	104
53	Doxorubicin conjugated NaYF4:Yb3+/Tm3+ nanoparticles for therapy and sensing of drug delivery by luminescence resonance energy transfer. Biomaterials, 2012, 33, 8704-8713.	5.7	103
54	In Situ Synthesis of Metal Sulfide Nanoparticles Based on 2D Metalâ€Organic Framework Nanosheets. Small, 2016, 12, 4669-4674.	5.2	101

#	Article	IF	CITATIONS
55	Boosting the lithium storage performance of MoS ₂ with graphene quantum dots. Journal of Materials Chemistry A, 2016, 4, 4783-4789.	5.2	100
56	Selective Epitaxial Growth of Oriented Hierarchical Metal–Organic Framework Heterostructures. Journal of the American Chemical Society, 2020, 142, 8953-8961.	6.6	100
57	Poly(acrylic acid) modified lanthanide-doped GdVO ₄ hollow spheres for up-conversion cell imaging, MRI and pH-dependent drug release. Nanoscale, 2013, 5, 253-261.	2.8	94
58	In Situ Growth of NiFe Alloy Nanoparticles Embedded into N-Doped Bamboo-like Carbon Nanotubes as a Bifunctional Electrocatalyst for Zn–Air Batteries. ACS Applied Materials & Interfaces, 2018, 10, 26178-26187.	4.0	94
59	Regulation of Morphology and Electronic Structure of FeCoNi Layered Double Hydroxides for Highly Active and Stable Water Oxidization Catalysts. Advanced Energy Materials, 2021, 11, .	10.2	94
60	Direct and continuous generation of pure acetic acid solutions via electrocatalytic carbon monoxide reduction. Proceedings of the National Academy of Sciences of the United States of America, 2021, 118 , .	3.3	93
61	Self-Assembly of Two-Dimensional Nanosheets into One-Dimensional Nanostructures. CheM, 2016, 1, 59-77.	5.8	92
62	An anion-driven Sn ²⁺ exchange reaction in CsPbBr ₃ nanocrystals towards tunable and high photoluminescence. Journal of Materials Chemistry C, 2018, 6, 5506-5513.	2.7	90
63	Co@Co ₃ O ₄ @PPD Core@bishell Nanoparticleâ€Based Composite as an Efficient Electrocatalyst for Oxygen Reduction Reaction. Small, 2016, 12, 2580-2587.	5.2	86
64	Formation of g ₃ N ₄ Nanotubes towards Superior Photocatalysis Performance. ChemCatChem, 2019, 11, 4558-4567.	1.8	86
65	Identification of the Intrinsic Dielectric Properties of Metal Single Atoms for Electromagnetic Wave Absorption. Nano-Micro Letters, 2022, 14, 27.	14.4	86
66	Insights into Practical-Scale Electrochemical H2O2 Synthesis. Trends in Chemistry, 2020, 2, 942-953.	4.4	85
67	Intramolecular Hydrogen Bonding-Based Topology Regulation of Two-Dimensional Covalent Organic Frameworks. Journal of the American Chemical Society, 2020, 142, 13162-13169.	6.6	85
68	Liquid-phase growth of platinum nanoparticles on molybdenum trioxide nanosheets: an enhanced catalyst with intrinsic peroxidase-like catalytic activity. Nanoscale, 2014, 6, 12340-12344.	2.8	82
69	Thiazole derivative-modified upconversion nanoparticles for Hg ²⁺ detection in living cells. Nanoscale, 2016, 8, 276-282.	2.8	82
70	Growth of CoFe ₂ O ₄ hollow nanoparticles on graphene sheets for high-performance electromagnetic wave absorbers. Journal of Materials Chemistry C, 2018, 6, 12781-12787.	2.7	82
71	Electrochemical oxygen reduction to hydrogen peroxide at practical rates in strong acidic media. Nature Communications, 2022, 13, .	5.8	82

Controllable synthesis and tunable luminescence properties of Y2(WO4)3:Ln3+ (Ln = Eu, Yb/Er, Yb/Tm) Tj ETQq0.0 rgBT /Oyerlock 10^{-2}

#	Article	IF	Citations
73	Self-supported N-doped CNT arrays for flexible Zn–air batteries. Journal of Materials Chemistry A, 2020, 8, 18162-18172.	5.2	81
74	Electrospun Upconversion Composite Fibers as Dual Drugs Delivery System with Individual Release Properties. Langmuir, 2013, 29, 9473-9482.	1.6	75
75	A cyanine-modified upconversion nanoprobe for NIR-excited imaging of endogenous hydrogen peroxide signaling inÂvivo. Biomaterials, 2015, 54, 34-43.	5.7	75
76	Engineering a High-Energy-Density and Long Lifespan Aqueous Zinc Battery via Ammonium Vanadium Bronze. ACS Applied Materials & Samp; Interfaces, 2019, 11, 20796-20803.	4.0	75
77	Amorphous Porous Organic Polymers Based on Schiffâ€Base Chemistry for Highly Efficient Iodine Capture. Chemistry - an Asian Journal, 2018, 13, 2046-2053.	1.7	74
78	Doping MoS2 with Graphene Quantum Dots: Structural and Electrical Engineering towards Enhanced Electrochemical Hydrogen Evolution. Electrochimica Acta, 2016, 211, 603-610.	2.6	72
79	Hierarchical nanoarchitectured hybrid electrodes based on ultrathin MoSe ₂ nanosheets on 3D ordered macroporous carbon frameworks for high-performance sodium-ion batteries. Journal of Materials Chemistry A, 2020, 8, 2843-2850.	5.2	69
80	AuAg Nanosheets Assembled from Ultrathin AuAg Nanowires. Journal of the American Chemical Society, 2015, 137, 1444-1447.	6.6	68
81	Facile and mass production synthesis of \hat{l}^2 -NaYF4:Yb3+, Er3+/Tm3+ 1D microstructures with multicolor up-conversion luminescence. Chemical Communications, 2011, 47, 12143.	2.2	67
82	Preparation of Cobalt Sulfide Nanoparticle-Decorated Nitrogen and Sulfur Co-Doped Reduced Graphene Oxide Aerogel Used as a Highly Efficient Electrocatalyst for Oxygen Reduction Reaction. Small, 2016, 12, 5920-5926.	5.2	65
83	Recent Progress in the Preparation, Assembly, Transformation, and Applications of Layerâ€5tructured Nanodisks beyond Graphene. Advanced Materials, 2017, 29, 1701704.	11.1	65
84	Synthesis of Pd ₃ Sn and PdCuSn Nanorods with <i>L1₂</i> Phase for Highly Efficient Electrocatalytic Ethanol Oxidation. Advanced Materials, 2022, 34, e2106115.	11.1	65
85	Highly Sensitive and Selective Aptamer-Based Fluorescence Detection of a Malarial Biomarker Using Single-Layer MoS ₂ Nanosheets. ACS Sensors, 2016, 1, 1315-1321.	4.0	64
86	Rapid, morphologically controllable, large-scale synthesis of uniform Y(OH)3 and tunable luminescent properties of Y2O3:Yb3+/Ln3+ (Ln = Er, Tm and Ho). Journal of Materials Chemistry, 2012, 22, 16136.	6.7	63
87	Composition- and phase-controlled synthesis and applications of alloyed phase heterostructures of transition metal disulphides. Nanoscale, 2017, 9, 5102-5109.	2.8	63
88	The edge-epitaxial growth of yellow g-C ₃ N ₄ on red g-C ₃ N ₄ nanosheets with superior photocatalytic activities. Chemical Communications, 2021, 57, 3119-3122.	2.2	61
89	Construction of 2D g-C ₃ N ₄ lateral-like homostructures and their photo- and electro-catalytic activities. Chemical Communications, 2019, 55, 1233-1236.	2.2	60
90	Preparation of Ultrathin Twoâ€Dimensional Ti _{<i>x</i>} Ta _{1â^³<i>x</i>} S _{<i>y</i>} O _{<i>z</i>} Nanosheets as Highly Efficient Photothermal Agents. Angewandte Chemie - International Edition, 2017, 56, 7842-7846.	7.2	59

#	Article	IF	CITATIONS
91	Transition metals decorated g-C3N4/N-doped carbon nanotube catalysts for water splitting: A review. Journal of Electroanalytical Chemistry, 2021, 895, 115510.	1.9	59
92	Proton sponge promotion of electrochemical CO2 reduction to multi-carbon products. Joule, 2022, 6, 205-220.	11.7	57
93	Efficient bifunctional vanadium-doped Ni ₃ S ₂ nanorod array for overall water splitting. Inorganic Chemistry Frontiers, 2019, 6, 443-450.	3.0	54
94	Hierarchical flower-like Ni–Co layered double hydroxide nanostructures: synthesis and super performance. Inorganic Chemistry Frontiers, 2018, 5, 3033-3041.	3.0	53
95	Impact of the North Atlantic Oscillation on the Dipole Oscillation of summer precipitation over the central and eastern Tibetan Plateau. International Journal of Climatology, 2015, 35, 4539-4546.	1.5	52
96	Lösungsprozessierte MoS ₂ â€Nanoplätchen: Herstellung, Hybridisierung und Anwendungen. Angewandte Chemie, 2016, 128, 8960-8984.	1.6	52
97	Epidermal Supercapacitor with High Performance. Advanced Functional Materials, 2016, 26, 8178-8184.	7.8	52
98	Three dimensional graphene-supported nitrogen-doped carbon nanotube architectures for attenuation of electromagnetic energy. Journal of Materials Chemistry C, 2019, 7, 11868-11878.	2.7	50
99	Visible-Light-Induced Dearomatization via [2+2] Cycloaddition or 1,5-Hydrogen Atom Transfer: Divergent Reaction Pathways of Transient Diradicals. ACS Catalysis, 2020, 10, 12618-12626.	5.5	50
100	Biosynthesis of Selfâ€Assembled Proteinaceous Nanoparticles for Vaccination. Advanced Materials, 2020, 32, e2002940.	11.1	50
101	Organic-Dye-Modified Upconversion Nanoparticle as a Multichannel Probe To Detect Cu ²⁺ in Living Cells. ACS Applied Materials & Samp; Interfaces, 2018, 10, 1028-1032.	4.0	49
102	Weavable, Highâ€Performance, Solidâ€State Supercapacitors Based on Hybrid Fibers Made of Sandwiched Structure of MWCNT/rGO/MWCNT. Advanced Electronic Materials, 2016, 2, 1600102.	2.6	47
103	Fusiformâ€Shaped gâ€C ₃ N ₄ Capsules with Superior Photocatalytic Activity. Small, 2020, 16, e2003910.	5.2	47
104	CsPbX ₃ Quantum Dots Embedded in Zeolitic Imidazolate Framework-8 Microparticles for Bright White Light-Emitting Devices. ACS Applied Nano Materials, 2021, 4, 5478-5485.	2.4	46
105	Simulation of nanoparticles interacting with a cell membrane: probing the structural basis and potential biomedical application. NPG Asia Materials, 2021, 13, .	3.8	46
106	Platinum (IV) Proâ€Drug Conjugated NaYF ₄ :Yb ³⁺ /Er ³⁺ Nanoparticles for Targeted Drug Delivery and Upâ€Conversion Cell Imaging. Advanced Healthcare Materials, 2013, 2, 562-567.	3.9	45
107	Self-assembled three-dimensional NaY(WO4)2:Ln3+ architectures: Hydrothermal synthesis, growth mechanism and luminescence properties. Journal of Alloys and Compounds, 2012, 529, 140-147.	2.8	44
108	Synthesis of MoX2 (X = Se or S) monolayers with high-concentration 1T′ phase on 4H/fcc-Au nanorods for hydrogen evolution. Nano Research, 2019, 12, 1301-1305.	5.8	44

#	Article	IF	CITATIONS
109	Controlling the growth of a SiO ₂ coating on hydrophobic CsPbBr ₃ nanocrystals towards aqueous transfer and high luminescence. Nanoscale, 2021, 13, 3860-3867.	2.8	44
110	CO2/carbonate-mediated electrochemical water oxidation to hydrogen peroxide. Nature Communications, 2022, 13, 2668.	5.8	44
111	Triangular Ag–Pd alloy nanoprisms: rational synthesis with high-efficiency for electrocatalytic oxygen reduction. Nanoscale, 2014, 6, 11738-11743.	2.8	43
112	NiMoS ₃ Nanorods as pH-Tolerant Electrocatalyst for Efficient Hydrogen Evolution. ACS Sustainable Chemistry and Engineering, 2017, 5, 9006-9013.	3.2	43
113	A two-step gas/liquid strategy for the production of N-doped defect-rich transition metal dichalcogenide nanosheets and their antibacterial applications. Nanoscale, 2020, 12, 8415-8424.	2.8	43
114	Ni/Ni ₃ C core–shell nanoparticles encapsulated in N-doped bamboo-like carbon nanotubes towards efficient overall water splitting. Inorganic Chemistry Frontiers, 2019, 6, 1073-1080.	3.0	42
115	Ultrastable g-C ₃ N ₄ assemblies with high quantum yield and reversible photoluminescence. Chemical Communications, 2018, 54, 13519-13522.	2.2	41
116	The design of a novel and resistant Zn(PZDC)(ATZ) MOF catalyst for the chemical fixation of CO ₂ under solvent-free conditions. Inorganic Chemistry Frontiers, 2019, 6, 317-325.	3.0	41
117	Isoreticular Series of Two-Dimensional Covalent Organic Frameworks with the kgd Topology and Controllable Micropores. Journal of the American Chemical Society, 2022, 144, 6475-6482.	6.6	41
118	Shell-core MoS2 nanosheets@Fe3O4 sphere heterostructure with exposed active edges for efficient electrocatalytic hydrogen production. Journal of Alloys and Compounds, 2017, 715, 53-59.	2.8	40
119	Hybrid of Fe4[Fe(CN)6]3 nanocubes and MoS2 nanosheets on nitrogen-doped graphene realizing improved electrochemical hydrogen production. Electrochimica Acta, 2018, 263, 140-146.	2.6	38
120	Evolution of Morphology, Phase Composition, and Photoluminescence of Cesium Lead Bromine Nanocrystals with Temperature and Precursors. Journal of Physical Chemistry C, 2018, 122, 28968-28976.	1.5	38
121	Ultra-thin metal-organic framework nanoribbons. National Science Review, 2020, 7, 46-52.	4.6	38
122	Dreidimensionale Architekturen aus Übergangsmetallâ€Dichalkogenidâ€Nanomaterialien zur elektrochemischen Energiespeicherung und â€umwandlung. Angewandte Chemie, 2018, 130, 634-655.	1.6	37
123	Vertically aligned MoS ₂ nanosheets on N-doped carbon nanotubes with NiFe alloy for overall water splitting. Inorganic Chemistry Frontiers, 2020, 7, 3578-3587.	3.0	37
124	Mn:CsPbBr ₃ Nanoplatelets for Bright White-Emitting Displays. ACS Applied Nano Materials, 2021, 4, 6223-6230.	2.4	37
125	Cyan-emitting Ti4+- and Mn2+-coactivated Mg2SnO4 as a potential phosphor to enlarge the color gamut for field emission display. Journal of Materials Chemistry, 2011, 21, 6477.	6.7	36
126	Enhanced hydrogen evolution of MoS ₂ /RGO: vanadium, nitrogen dopants triggered new active sites and expanded interlayer. Inorganic Chemistry Frontiers, 2018, 5, 2092-2099.	3.0	36

#	Article	IF	CITATIONS
127	A mini review on two-dimensional nanomaterial assembly. Nano Research, 2020, 13, 1179-1190.	5.8	36
128	Bifunctional Nitrogen-Doped Carbon Dots in g-C ₃ N ₄ /WO _{<i>x</i>} Heterojunction for Enhanced Photocatalytic Water-Splitting Performance. Langmuir, 2021, 37, 4236-4247.	1.6	36
129	General Synthetic Strategy for Pomegranate-like Transition-Metal Phosphides@N-Doped Carbon Nanostructures with High Lithium Storage Capacity., 2019, 1, 265-271.		35
130	Photo-chemical property evolution of superior thin g-C3N4 nanosheets with their crystallinity and Pt deposition. International Journal of Hydrogen Energy, 2020, 45, 21523-21531.	3.8	35
131	Layered graphitic carbon nitride: nano-heterostructures, photo/electro-chemical performance and trends. Journal of Nanostructure in Chemistry, 2022, 12, 669-691.	5.3	34
132	Investigation of Thermally Induced Cellular Ablation and Heat Response Triggered by Planar MoS ₂ -Based Nanocomposite. Bioconjugate Chemistry, 2017, 28, 1059-1067.	1.8	33
133	Horizontally growth of WS2/WO3 heterostructures on crystalline g-C3N4 nanosheets towards enhanced photo/electrochemical performance. Journal of Nanostructure in Chemistry, 2021, 11, 367-380.	5.3	33
134	A 2.0 V capacitive device derived from shape-preserved metal nitride nanorods. Nano Energy, 2016, 26, 1-6.	8.2	31
135	Liquidâ€Phase Exfoliation and Functionalization of MoS ₂ Nanosheets for Effective Antibacterial Application. ChemBioChem, 2020, 21, 2373-2380.	1.3	31
136	General Facet-Controlled Synthesis of Single-Crystalline {010}-Oriented LiMPO ₄ (M = Mn,) Tj ETQq	0 0 0 rgB	T /Overlock 10
137	Co3[Fe(CN)6]2 nanocube derived architecture of Co,Fe co-doped MoS2 nanosheets for efficient water electrolysis. Electrochimica Acta, 2019, 309, 116-124.	2.6	30
138	Cell Membrane Camouflaged Hydrophobic Drug Nanoflake Sandwiched with Photosensitizer for Orchestration of Chemoâ€Photothermal Combination Therapy. Small, 2019, 15, e1805544.	5.2	30
139	Iridium-Catalyzed Asymmetric Allylic Amination Reactions with <i>N</i> -Aryl Phosphoramidite Ligands. Organometallics, 2016, 35, 2467-2472.	1.1	29
140	Enhancing the sensing specificity of a MoS ₂ nanosheet-based FRET aptasensor using a surface blocking strategy. Analyst, The, 2017, 142, 2570-2577.	1.7	27
141	Controlling Mn Emission in CsPbCl ₃ Nanocrystals via Ion Exchange toward Enhanced and Tunable White Photoluminescence. Journal of Physical Chemistry C, 2020, 124, 27032-27039.	1.5	27
142	Recent advances in biomedical applications of 2D nanomaterials with peroxidase-like properties. Advanced Drug Delivery Reviews, 2022, 185, 114269.	6.6	27
143	Chemically Binding Scaffolded Anodes with 3D Graphene Architectures Realizing Fast and Stable Lithium Storage. Research, 2019, 2019, 8393085.	2.8	26
144	A high-efficiency noble metal-free electrocatalyst of cobalt-iron layer double hydroxides nanorods coupled with graphene oxides grown on a nickel foam towards methanol electrooxidation. Journal of the Taiwan Institute of Chemical Engineers, 2020, 112, 212-221.	2.7	25

#	Article	IF	CITATIONS
145	Morphology-controllable synthesis and enhanced luminescence properties of \hat{l}^2 -NaLuF4:Ln (Ln = Eu, Tb) Tj ETQq1	1 _{0.7} 8431	.4.rgBT /Ov
146	Self-template synthesis of CoFe ₂ O ₄ nanotubes for high-performance lithium storage. RSC Advances, 2015, 5, 29837-29841.	1.7	23
147	Pt nanoparticles embedded spine-like g-C ₃ N ₄ nanostructures with superior photocatalytic activity for H ₂ generation and CO ₂ reduction. Nanotechnology, 2021, 32, 175401.	1.3	23
148	Electrochemical Lithium Storage Performance of Molten Salt Derived V2SnC MAX Phase. Nano-Micro Letters, 2021, 13, 158.	14.4	23
149	Rational Synthesis of Triangular Au–Ag ₂ S Hybrid Nanoframes with Effective Photoresponses. Chemistry - A European Journal, 2014, 20, 2742-2745.	1.7	22
150	Oneâ€Pot Templateâ€Free Synthesis of NaYF ₄ Upconversion Hollow Nanospheres for Bioimaging and Drug Delivery. Chemistry - an Asian Journal, 2014, 9, 1655-1662.	1.7	22
151	CoMoS3.13 nanosheets grafted on B, N co-doped graphene nanotubes as bifunctional catalyst for efficient water electrolysis. Journal of Alloys and Compounds, 2018, 731, 403-410.	2.8	22
152	Transition metal halide derived phase transition from Cs ₄ PbCl ₆ to CsPb _x M _{1–x} X ₃ for bright white light-emitting diodes. Journal of Materials Chemistry C, 2021, 9, 5732-5739.	2.7	22
153	Fast and large lithium storages from CoMoO4 nanorods-graphene composite. Ionics, 2015, 21, 2993-2999.	1.2	21
154	Synthesis of WO _{<i>n</i>} â€WX ₂ (<i>n</i> =2.7, 2.9; X=S, Se) Heterostructures for Highly Efficient Green Quantum Dot Lightâ€Emitting Diodes. Angewandte Chemie - International Edition, 2017, 56, 10486-10490.	7.2	21
155	Hierarchical Laminar Superstructures of Rhombic Priceite (Ca ₄ B ₁₀ O ₁₉ ·7H ₂ O): Facile Hydrothermal Synthesis, Shape Evolution, Optical, and Thermal Decomposition Properties. Crystal Growth and Design, 2011, 11, 2935-2941	1.4	20
156	Lowâ€Dimensional Black Phosphorus in Sensor Applications: Advances and Challenges. Advanced Functional Materials, 2021, 31, 2106484.	7.8	19
157	Multifunctional NaYF4:Yb/Er/Gd nanocrystal decorated SiO2 nanotubes for anti-cancer drug delivery and dual modal imaging. RSC Advances, 2013, 3, 8517.	1.7	18
158	Hierarchical bundles structure of \hat{l}^2 -NaLuF4: facile synthesis, shape evolution, and luminescent properties. RSC Advances, 2012, 2, 10337.	1.7	16
159	Response of Xiao Dongkemadi Glacier in the central Tibetan Plateau to the current climate change and future scenarios by 2050. Journal of Mountain Science, 2016, 13, 13-28.	0.8	16
160	A simple electrochemical method for conversion of Pt wires to Pt concave icosahedra and nanocubes on carbon paper for electrocatalytic hydrogen evolution. Science China Materials, 2019, 62, 115-121.	3.5	16
161	Sizeâ€Dependent Phase Transformation of Noble Metal Nanomaterials. Small, 2019, 15, e1903253.	5.2	16
162	MoS2@C nanosphere as near infrared / pH dual response platform for chemical photothermal combination treatment. Colloids and Surfaces B: Biointerfaces, 2020, 192, 111054.	2.5	16

#	Article	IF	CITATIONS
163	Effect of Data Assimilation Using WRF-3DVAR for Heavy Rain Prediction on the Northeastern Edge of the Tibetan Plateau. Advances in Meteorology, 2015, 2015, 1-14.	0.6	15
164	Probing enhanced lithium-ion transport kinetics in 2D holey nanoarchitectured electrodes. Nano Futures, 2018, 2, 035008.	1.0	15
165	Near-room temperature ferromagnetic behavior of single-atom-thick 2D iron in nanolaminated ternary MAX phases. Applied Physics Reviews, 2021, 8, .	5.5	14
166	General Synthesis of Ordered Mesoporous Carbonaceous Hybrid Nanostructures with Molecularly Dispersed Polyoxometallates. Angewandte Chemie - International Edition, 2021, 60, 15556-15562.	7.2	13
167	Mn-derived Cs ₄ PbX ₆ nanocrystals with stable and tunable wide luminescence for white light-emitting diodes. Journal of Materials Chemistry C, 2022, 10, 3886-3893.	2.7	13
168	Preparation of Ultrathin Twoâ€Dimensional Ti _{<i>x</i>} Csub> <i>x</i> Ta _{Nanosheets as Highly Efficient Photothermal Agents. Angewandte Chemie, 2017, 129, 7950-7954.}	1.6	11
169	Metastable Î ³ -CsPbl ₃ Perovskite Nanocrystals Created Using Aged Orthorhombic CsPbBr ₃ . Journal of Physical Chemistry C, 2021, 125, 7109-7118.	1.5	11
170	MoS _{2–2<i>x</i>} Se _{2<i>x</i>} Nanosheets Grown on Hollow Carbon Spheres for Enhanced Electrochemical Activity. Langmuir, 2021, 37, 8314-8322.	1.6	10
171	Hepatic differentiation of human embryonic stem cells by coupling substrate stiffness and microtopography. Biomaterials Science, 2021, 9, 3776-3790.	2.6	10
172	Mechanical determination of particle–cell interactions and the associated biomedical applications. Journal of Materials Chemistry B, 2018, 6, 7129-7143.	2.9	9
173	Nitrogen and Phosphate Coâ€doped Graphene as Efficient Bifunctional Electrocatalysts by Precursor Modulation Strategy for Oxygen Reduction and Evolution Reactions. ChemElectroChem, 2021, 8, 3262-3272.	1.7	9
174	Tuning Dielectric Loss of SiO2@CNTs for Electromagnetic Wave Absorption. Nanomaterials, 2021, 11, 2636.	1.9	8
175	Study on Doppler effects estimate in underwater acoustic communication. Proceedings of Meetings on Acoustics, 2013, , .	0.3	7
176	Effect of lake surface temperature on the summer precipitation over the Tibetan Plateau. Journal of Mountain Science, 2016, 13, 802-810.	0.8	7
177	Synthesis of WO _{<i>n</i>} â€WX ₂ (<i>n</i> =2.7, 2.9; X=S, Se) Heterostructures for Highly Efficient Green Quantum Dot Lightâ€Emitting Diodes. Angewandte Chemie, 2017, 129, 10622-10626.	1.6	7
178	Solvent-Induced Supramolecular Assembly of a Peptide-Tetrathiophene-Peptide Conjugate. Frontiers in Chemistry, 2019, 7, 467.	1.8	7
179	Hierarchically 3D bifunctional catalysts assembled with 1D MoC core/branched N-doped CNT arrays for zinc-air batteries. Electrochimica Acta, 2021, 367, 137522.	2.6	7
180	Effects of defects on the electronic and optical properties of TiO ₂ nanosheet. Electronic Structure, 2019, 1, 044002.	1.0	6

#	Article	IF	CITATIONS
181	A Highâ€Resolution Ternary Model Demonstrates How PEGylated 2D Nanomaterial Stimulates Integrin <i>î±</i> _v <i>î²</i> _v <i>0 Cell Membrane. Advanced Science, 2021, 8, e2004506.</i>	5.6	6
182	K ⁺ Induced Phase Transformation of Layered Titanium Disulfide Boosts Ultrafast Potassiumâ€ion Storage. Advanced Functional Materials, 2022, 32, .	7.8	6
183	An application of the differential spread-spectrum technique in mobile underwater acoustic communication. Science China Information Sciences, 2011, 54, 2190-2198.	2.7	4
184	Synthesis and Supramolecular Assembly of a Terrylene Diimide Derivative Decorated With Long Branched Alkyl Chains. Frontiers in Chemistry, 2019, 7, 473.	1.8	4
185	Interference Signal Recognition Based on Multi-Modal Deep Learning. , 2020, , .		4
186	Drug Delivery: Platinum (IV) Pro-Drug Conjugated NaYF4:Yb3+/Er3+Nanoparticles for Targeted Drug Delivery and Up-Conversion Cell Imaging (Adv. Healthcare Mater. 4/2013). Advanced Healthcare Materials, 2013, 2, 514-514.	3.9	3
187	Revealing the Solidâ€State Electrolyte Interfacial Stability Model with Na–K Liquid Alloy. Angewandte Chemie, 2022, 134, .	1.6	3
188	Research on UV Flame Detector. , 2014, , .		2
189	Exonuclease III-Regulated Target Cyclic Amplification-Based Single Nucleotide Polymorphism Detection Using Ultrathin Ternary Chalcogenide Nanosheets. Frontiers in Chemistry, 2019, 7, 844.	1.8	2
190	Mechanically Regulated Outside-In Activation of an I-Domain-Containing Integrin. Biophysical Journal, 2020, 119, 966-977.	0.2	2
191	Neon Atomic Spectrum Measurement Based on the Frank-Hertz Experiment. , 2014, , .		1
192	Design of Refueling Control System with Multi-ControlTerminal Based on Network. Electronics (Switzerland), 2021, 10, 1559.	1.8	1
193	Drug Delivery: Upâ€Conversion Luminescent and Porous NaYF ₄ :Yb ³⁺ , Er ³⁺ @SiO ₂ Nanocomposite Fibers for Antiâ€Cancer Drug Delivery and Cell Imaging (Adv. Funct. Mater. 13/2012). Advanced Functional Materials, 2012, 22, 2658-2658.	7.8	0
194	Vaccine Platforms: Biosynthesis of Selfâ€Assembled Proteinaceous Nanoparticles for Vaccination (Adv.) Tj ETQo	0 0,0 rgB	Γ/Oyerlock 10
195	General Synthesis of Ordered Mesoporous Carbonaceous Hybrid Nanostructures with Molecularly Dispersed Polyoxometallates. Angewandte Chemie, 2021, 133, 15684-15690.	1.6	0