
Tiequan Zhang

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4683519/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Modeling tillage and manure application on soil phosphorous loss under climate change. Nutrient Cycling in Agroecosystems, 2022, 122, 219-239.	1.1	3
2	Linking soil microbial community structure to potential carbon mineralization: A continental scale assessment of reduced tillage. Soil Biology and Biochemistry, 2022, 168, 108618.	4.2	17
3	Prospects and challenges in the use of models to estimate the influence of crop residue input on soil organic carbon in long-term experiments in Canada. Geoderma Regional, 2022, 30, e00534.	0.9	2
4	Phosphorus characteristics of Canada-wide animal manures and implications for sustainable manure management with a cleaner environment. Science of the Total Environment, 2022, 845, 157200.	3.9	3
5	Overriding sorafenib resistance via blocking lipid metabolism and Ras by sphingomyelin synthase 1 inhibition in hepatocellular carcinoma. Cancer Chemotherapy and Pharmacology, 2021, 87, 217-228.	1.1	9
6	Characterization of sedimentary phosphorus in Lake Erie and on-site quantification of internal phosphorus loading. Water Research, 2021, 188, 116525.	5.3	26
7	Up-Regulation of circEIF6 Contributes to Pancreatic Cancer Development Through Targeting miR-557/SLC7A11/PI3K/AKT Signaling. Cancer Management and Research, 2021, Volume 13, 247-258.	0.9	23
8	Phosphorus fate, transport and management on subsurface drained agricultural organic soils: a review. Environmental Research Letters, 2021, 16, 013004.	2.2	20
9	Modeling impacts of climate change on crop yield and phosphorus loss in a subsurface drained field of Lake Erie region, Canada. Agricultural Systems, 2021, 190, 103110.	3.2	12
10	Zero-Valent Iron Nanoparticles Remediate Nickel-Contaminated Aqueous Solutions and Biosolids-Amended Agricultural Soil. Materials, 2021, 14, 2655.	1.3	2
11	Crop Production and Phosphorus Legacy with Long-Term Phosphorus- and Nitrogen-Based Swine Manure Applications under Corn-Soybean Rotation. Agronomy, 2021, 11, 1548.	1.3	10
12	Manure-induced carbon retention measured from long-term field studies in Canada. Agriculture, Ecosystems and Environment, 2021, 321, 107619.	2.5	7
13	Modelling carbon dioxide emissions under a maize-soy rotation using machine learning. Biosystems Engineering, 2021, 212, 1-18.	1.9	19
14	<i>Global sensitivity analysis of RZWQM2-P in simulation of agricultural phosphorus loss</i> . , 2020, , .		0
15	Comparison of RZWQM2 and DNDC Models to Simulate Greenhouse Gas Emissions under Combined Inorganic/Organic Fertilization in a Subsurface-Drained Field. Transactions of the ASABE, 2020, 63, 771-787.	1.1	12
16	Nano-Scale Drinking Water Treatment Residuals Affect Arsenic Fractionation and Speciation in Biosolids-Amended Agricultural Soil. Applied Sciences (Switzerland), 2020, 10, 5633.	1.3	3
17	An 11-Year Agronomic, Economic, and Phosphorus Loss Potential Evaluation of Legacy Phosphorus Utilization in a Clay Loam Soil of the Lake Erie Basin. Frontiers in Earth Science, 2020, 8, .	0.8	8
18	Modeling of phosphorus loss from field to watershed: A review. Journal of Environmental Quality, 2020. 49. 1203-1224.	1.0	15

#	Article	IF	CITATIONS
19	Nitrous oxide emissions as affected by fertilizer and water table management under a corn-soybean rotation. Geoderma, 2020, 375, 114473.	2.3	6
20	Evaluating RZ-SHAW model for simulating surface runoff and subsurface tile drainage under regular and controlled drainage with subirrigation in southern Ontario. Agricultural Water Management, 2020, 237, 106179.	2.4	4
21	Modeling and Mitigating Phosphorus Losses from a Tileâ€Drained and Manured Field Using RZWQM2â€P. Journal of Environmental Quality, 2019, 48, 995-1005.	1.0	13
22	Development and evaluation of a phosphorus (P) module in RZWQM2 for phosphorus management in agricultural fields. Environmental Modelling and Software, 2019, 113, 48-58.	1.9	18
23	Modeling the Impacts of Manure on Phosphorus Loss in Surface Runoff and Subsurface Drainage. Journal of Environmental Quality, 2019, 48, 39-46.	1.0	12
24	Phosphorus Loss Mitigation in Leachate and Surface Runoff from Clay Loam Soil Using Four Lime-Based Materials. Water, Air, and Soil Pollution, 2018, 229, 1.	1.1	10
25	Simulating crop yield, surface runoff, tile drainage and phosphorus loss in a clay loam soil of the Lake Erie region using EPIC. Agricultural Water Management, 2018, 204, 212-221.	2.4	18
26	Modeling Phosphorus Losses through Surface Runoff and Subsurface Drainage Using ICECREAM. Journal of Environmental Quality, 2018, 47, 203-211.	1.0	7
27	Environmental Indicator Principium with Case References to Agricultural Soil, Water, and Air Quality and Modelâ€Derived Indicators. Journal of Environmental Quality, 2018, 47, 191-202.	1.0	4
28	Solid Cattle Manure Less Prone to Phosphorus Loss in Tile Drainage Water. Journal of Environmental Quality, 2018, 47, 318-325.	1.0	10
29	Modeling phosphorus losses from soils amended with cattle manures and chemical fertilizers. Science of the Total Environment, 2018, 639, 580-587.	3.9	23
30	Soil Test Phosphorus and Phosphorus Availability of Swine Manures with Longâ€Term Application. Agronomy Journal, 2018, 110, 1943-1950.	0.9	8
31	Drainage water management combined with cover crop enhances reduction of soil phosphorus loss. Science of the Total Environment, 2017, 586, 362-371.	3.9	23
32	Soil phosphorus loss in tile drainage water from long-term conventional- and non-tillage soils of Ontario with and without compost addition. Science of the Total Environment, 2017, 580, 9-16.	3.9	19
33	Modeling hourly subsurface drainage using steady-state and transient methods. Journal of Hydrology, 2017, 550, 516-526.	2.3	20
34	Developing and evaluating a phosphorus (P) module in RZWQM2 for phosphorus management in tile drained agricultural fields. , 2017, , .		2
35	Solute dynamics and the Ontario nitrogen index: II. Nitrate leaching. Canadian Journal of Soil Science, 2016, 96, 122-135.	0.5	14
36	Guiding phosphorus stewardship for multiple ecosystem services. Ecosystem Health and Sustainability, 2016, 2, .	1.5	30

#	Article	IF	CITATIONS
37	Solute dynamics and the Ontario nitrogen index: I. Chloride leaching. Canadian Journal of Soil Science, 2016, 96, 105-121.	0.5	7
38	A phosphorus sorption index and its use to estimate leaching of dissolved phosphorus from agricultural soils in Ontario. Geoderma, 2016, 274, 79-87.	2.3	42
39	Predicting environmental soil phosphorus limits for dissolved reactive phosphorus loss. Soil Use and Management, 2016, 32, 60-68.	2.6	5
40	Phosphorus source coefficient determination for quantifying phosphorus loss risk of various animal manures. Geoderma, 2016, 278, 23-31.	2.3	16
41	Phosphorus Sorption Parameters of Soils and Their Relationships with Soil Test Phosphorus. Soil Science Society of America Journal, 2015, 79, 672-680.	1.2	26
42	Tile Drainage Phosphorus Loss with Long-Term Consistent Cropping Systems and Fertilization. Journal of Environmental Quality, 2015, 44, 503-511.	1.0	36
43	Approximating Phosphorus Leaching from Agricultural Organic Soils by Soil Testing. Journal of Environmental Quality, 2015, 44, 1871-1882.	1.0	18
44	Impacts of Soil Conditioners and Water Table Management on Phosphorus Loss in Tile Drainage from a Clay Loam Soil. Journal of Environmental Quality, 2015, 44, 572-584.	1.0	17
45	Crop yield and phosphorus uptake as affected by phosphorus-based swine manure application under long-term corn-soybean rotation. Nutrient Cycling in Agroecosystems, 2015, 103, 217-228.	1.1	17
46	Agronomic and environmental soil phosphorus tests for predicting potential phosphorus loss from Ontario soils. Geoderma, 2015, 241-242, 51-58.	2.3	31
47	Cadmium Treatment Alters the Expression of Five Genes at theCda1Locus in Two Soybean Cultivars [Glycine Max(L.) Merr]. Scientific World Journal, The, 2014, 2014, 1-8.	0.8	8
48	Soil Testing to Predict Dissolved Reactive Phosphorus Loss in Surface Runoff from Organic Soils. Soil Science Society of America Journal, 2014, 78, 1786-1796.	1.2	10
49	Effects of Arbuscular Mycorrhizal Fungal Inoculation and Phosphorus (P) Addition on Maize P Utilization and Growth in Reclaimed Soil of a Mining Area. Communications in Soil Science and Plant Analysis, 2014, 45, 2413-2428.	0.6	4
50	Langmuir Equation Modifications to Describe Phosphorus Sorption in Soils of Ontario, Canada. Soil Science, 2014, 179, 536-546.	0.9	4
51	Reducing Nitrate Loss in Tile Drainage Water with Cover Crops and Water-Table Management Systems. Journal of Environmental Quality, 2014, 43, 587-598.	1.0	88
52	Various forms of organic and inorganic P fertilizers did not negatively affect soil- and root-inhabiting AM fungi in a maize–soybean rotation system. Mycorrhiza, 2013, 23, 143-154.	1.3	36
53	Effects of Bacterial and Fungal Inoculants in a Loess Soil Amended with Various Phosphorus Sources on Pea Growth and Phosphorus Uptake. Communications in Soil Science and Plant Analysis, 2013, 44, 2008-2018.	0.6	0
54	Soil Tests as Risk Indicators for Leaching of Dissolved Phosphorus from Agricultural Soils in Ontario. Soil Science Society of America Journal, 2012, 76, 220-229.	1.2	80

#	Article	IF	CITATIONS
55	Accounting for the Risks of Phosphorus Losses through Tile Drains in a Phosphorus Index. Journal of Environmental Quality, 2012, 41, 1720-1729.	1.0	47
56	Crop and soil nitrogen responses to phosphorus and potassium fertilization and drip irrigation under processing tomato. Nutrient Cycling in Agroecosystems, 2012, 93, 151-162.	1.1	4
57	Simulating water content, crop yield and nitrate-N loss under free and controlled tile drainage with subsurface irrigation using the DSSAT model. Agricultural Water Management, 2011, 98, 1105-1111.	2.4	105
58	Responses of Fruit Yield and Quality of Processing Tomato to Dripâ€Irrigation and Fertilizers Phosphorus and Potassium. Agronomy Journal, 2011, 103, 1339-1345.	0.9	35
59	Temporal patterns of soil phosphorus release to runoff during a rainfall event as influenced by soil properties and its effects on estimating soil P losses. Canadian Journal of Soil Science, 2011, 91, 339-347.	0.5	9
60	Processing tomato phosphorus utilization and post-harvest soil profile phosphorus as affected by phosphorus and potassium additions and drip irrigation. Canadian Journal of Soil Science, 2011, 91, 417-425.	0.5	15
61	Phosphorus loss by surface runoff from agricultural field plots with different cropping systems. Nutrient Cycling in Agroecosystems, 2011, 90, 23-32.	1.1	25
62	Processing Tomato Nitrogen Utilization and Soil Residual Nitrogen as Influenced by Nitrogen and Phosphorus Additions with Dripâ€Fertigation. Soil Science Society of America Journal, 2011, 75, 738-745.	1.2	15
63	Yield and Economic Assessments of Fertilizer Nitrogen and Phosphorus for Processing Tomato with Drip Fertigation. Agronomy Journal, 2010, 102, 774-780.	0.9	26
64	Nitrogen and Phosphorus Losses in Surface Runoff Water from Various Cash Cropping Systems. , 2010, , .		0
65	Estimating Dissolved Reactive Phosphorus Concentration in Surface Runoff Water from Major Ontario Soils. Journal of Environmental Quality, 2010, 39, 1771-1781.	1.0	56
66	Evaluation of Agronomic and Economic Effects of Nitrogen and Phosphorus Additions to Green Pepper with Drip Fertigation. Agronomy Journal, 2010, 102, 1434-1440.	0.9	5
67	Short-term carbon dioxide emissions and denitrification losses from soils amended with low-P manure from genetically modified pigs. Nutrient Cycling in Agroecosystems, 2008, 80, 153-160.	1.1	5
68	Chemical Structures of Manure from Conventional and Phytase Transgenic Pigs Investigated by Advanced Solid-State NMR Spectroscopy. Journal of Agricultural and Food Chemistry, 2008, 56, 2131-2138.	2.4	13
69	Soil microbial carbon and phosphorus as influenced by phosphorus fertilization and tillage in a maize-soybean rotation in south-western Quebec. Canadian Journal of Soil Science, 2008, 88, 21-30.	0.5	25
70	Effects of Suburban Land Use on Phosphorus Fractions and Speciation in the Upper Peruque Creek, Eastern Missouri. Water Environment Research, 2008, 80, 316-323.	1.3	3
71	SOLID-STATE FOURIER TRANSFORM INFRARED AND 31P NUCLEAR MAGNETIC RESONANCE SPECTRAL FEATURES OF PHOSPHATE COMPOUNDS. Soil Science, 2007, 172, 501-515.	0.9	82
72	Water Quality and Crop Production Improvement Using a Wetland-Reservoir and Draining/Subsurface Irrigation System. Canadian Water Resources Journal, 2007, 32, 129-136.	0.5	46

#	Article	IF	CITATIONS
73	Selection of a Waterâ€Extractable Phosphorus Test for Manures and Biosolids as an Indicator of Runoff Loss Potential. Journal of Environmental Quality, 2007, 36, 1357-1367.	1.0	90
74	Distinction of Metal Species of Phytate by Solid-State Spectroscopic Techniques. Soil Science Society of America Journal, 2007, 71, 940-943.	1.2	21
75	Land management effects on the near-surface physical quality of a clay loam soil. Soil and Tillage Research, 2007, 96, 316-330.	2.6	175
76	Preparation and FT-IR Characterization of Metal Phytate Compounds. Journal of Environmental Quality, 2006, 35, 1319-1328.	1.0	113
77	Inorganic N Dynamics from Soils Amended with Low-P Manure from Genetically Modified Pigs (EnviropigTM). Nutrient Cycling in Agroecosystems, 2006, 75, 297-304.	1.1	2
78	Evaluating the Influence of Storage Time, Sampleâ€handling Method, and Filter Paper on the Measurement of Waterâ€Extractable Phosphorus in Animal Manures. Communications in Soil Science and Plant Analysis, 2006, 37, 451-463.	0.6	3
79	Response of Chinese Cabbage Cultivars to Petiole Spotting and Bacterial Soft Rot. HortTechnology, 2003, 13, 190-195.	0.5	1
80	Effect of long-term conventional tillage and no-tillage systems on soil and water quality at the field scale. Water Science and Technology, 2002, 46, 183-190.	1.2	27
81	Changes of phosphorous fractions under continuous corn production in a temperate clay soil. Plant and Soil, 1997, 192, 133-139.	1.8	30