
Myungshim Kang

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4683478/publications.pdf Version: 2024-02-01

ΜΥΠΝΟΣΗΙΜ ΚΑΝΟ

#	Article	IF	CITATIONS
1	The interaction of supramolecular anticancer drug amphiphiles with phospholipid membranes. Nanoscale Advances, 2021, 3, 370-382.	4.6	3
2	Kirkwood–Buff-Derived Force Field for Peptides and Proteins: Philosophy and Development of KBFF20. Journal of Chemical Theory and Computation, 2021, 17, 2964-2990.	5.3	14
3	Interaction of Camptothecin with Model Cellular Membranes. Journal of Chemical Theory and Computation, 2020, 16, 3373-3384.	5.3	5
4	Rational Coarse-Grained Molecular Dynamics Simulations of Supramolecular Anticancer Nanotubes. Journal of Physical Chemistry B, 2019, 123, 10582-10593.	2.6	9
5	Isomeric control of the mechanical properties of supramolecular filament hydrogels. Biomaterials Science, 2018, 6, 216-224.	5.4	6
6	Molecular Mechanism for the Role of the H2A and H2B Histone Tails in Nucleosome Repositioning. Journal of Physical Chemistry B, 2018, 122, 11827-11840.	2.6	22
7	Molecular Dynamics Simulations of Supramolecular Anticancer Nanotubes. Journal of Chemical Information and Modeling, 2018, 58, 1164-1168.	5.4	8
8	Effect of Nucleotide State on the Protofilament Conformation of Tubulin Octamers. Journal of Physical Chemistry B, 2018, 122, 6164-6178.	2.6	10
9	Coarse-grained molecular dynamics studies of the structure and stability of peptide-based drug amphiphile filaments. Soft Matter, 2017, 13, 7721-7730.	2.7	16
10	Molecular simulations of peptide amphiphiles. Organic and Biomolecular Chemistry, 2017, 15, 7993-8005.	2.8	38
11	ï€â€"ï€ Stacking Mediated Chirality in Functional Supramolecular Filaments. Macromolecules, 2016, 49, 994-1001.	4.8	41
12	Switches of hydrogen bonds during ligand–protein association processes determine binding kinetics. Journal of Molecular Recognition, 2014, 27, 537-548.	2.1	21
13	Molecular Modeling of Paclitaxel Interacting with Membranes. Biophysical Journal, 2014, 106, 801a.	0.5	0
14	Molecular Simulation of the Concentration-Dependent Interaction of Hydrophobic Drugs with Model Cellular Membranes. Journal of Physical Chemistry B, 2014, 118, 11965-11972.	2.6	33
15	The paradox of conformational constraint in the design of Cbl(TKB)-binding peptides. Scientific Reports, 2013, 3, 1639.	3.3	17
16	Mechanistic Insights into Phosphopeptide–BRCT Domain Association: Preorganization, Flexibility, and Phosphate Recognition. Journal of Physical Chemistry B, 2012, 116, 10247-10258.	2.6	6
17	Gating and Intermolecular Interactions in Ligand-Protein Association: Coarse-Grained Modeling of HIV-1 Protease. Journal of Chemical Theory and Computation, 2011, 7, 3438-3446.	5.3	36
18	A Pairwise Preferential Interaction Model for Understanding Peptide Aggregation. International Journal of Thermophysics, 2010, 31, 793-804.	2.1	2

Myungshim Kang

#	Article	IF	CITATIONS
19	Comment on "Can existing models quantitatively describe the mixing behavior of acetone with water― [J. Chem. Phys. 130, 124516 (2009)]. Journal of Chemical Physics, 2009, 131, 157101.	3.0	5
20	Direct Observation of Gold Nanoparticle Assemblies with the Porin MspA on Mica. ACS Nano, 2009, 3, 462-466.	14.6	11
21	Recent Applications of Kirkwood–Buff Theory to Biological Systems. Cell Biochemistry and Biophysics, 2008, 50, 1-22.	1.8	199
22	MspA Porinâ^'Gold Nanoparticle Assemblies: Enhanced Binding through a Controlled Cysteine Mutation. Nano Letters, 2008, 8, 1229-1236.	9.1	21
23	Kirkwood–Buff theory of four and higher component mixtures. Journal of Chemical Physics, 2008, 128, 244511.	3.0	21
24	Preferential interaction parameters in biological systems by Kirkwood–Buff theory and computer simulation. Fluid Phase Equilibria, 2007, 256, 14-19.	2.5	53
25	A Kirkwood-Buff derived force field for amides. Journal of Computational Chemistry, 2006, 27, 1477-1485.	3.3	69
26	Structure–activity relationships of simplified resiniferatoxin analogues with potent VR1 agonism elucidates an active conformation of RTX for VR1 binding. Bioorganic and Medicinal Chemistry, 2004, 12, 1055-1069.	3.0	9
27	Analysis of structure–activity relationships with the N-(3-acyloxy-2-benzylpropyl)-Nâ€2-[4-(methylsulfonylamino)benzyl]thiourea template for vanilloid receptor 1 antagonism. Bioorganic and Medicinal Chemistry, 2004, 12, 3411-3420.	3.0	14
28	N-(3-Acyloxy-2-benzylpropyl)-Nâ€~-[4-(methylsulfonylamino)benzyl]thiourea Analogues: Novel Potent and High Affinity Antagonists and Partial Antagonists of the Vanilloid Receptor. Journal of Medicinal Chemistry, 2003, 46, 3116-3126.	6.4	110