
Youngmee Jung

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4683300/publications.pdf Version: 2024-02-01

YOUNCMEE LUNC

#	Article	IF	CITATIONS
1	Manufacture of elastic biodegradable PLCL scaffolds for mechano-active vascular tissue engineering. Journal of Biomaterials Science, Polymer Edition, 2004, 15, 645-660.	1.9	161
2	Current status and future direction of biodegradable metallic and polymeric vascular scaffolds for next-generation stents. Acta Biomaterialia, 2017, 60, 3-22.	4.1	120
3	Decellularized heart ECM hydrogel using supercritical carbon dioxide for improved angiogenesis. Acta Biomaterialia, 2018, 67, 270-281.	4.1	113
4	Cartilage regeneration with highly-elastic three-dimensional scaffolds prepared from biodegradable poly(l-lactide-co-É›-caprolactone). Biomaterials, 2008, 29, 4630-4636.	5.7	102
5	The enhancement of mature vessel formation and cardiac function in infarcted hearts using dual growth factor delivery with self-assembling peptides. Biomaterials, 2011, 32, 6080-6088.	5.7	93
6	Stem cell recruitment and angiogenesis of neuropeptide substance P coupled with self-assembling peptide nanofiber in a mouse hind limb ischemia model. Biomaterials, 2013, 34, 1657-1668.	5.7	92
7	Current status of three-dimensional printing inks for soft tissue regeneration. Tissue Engineering and Regenerative Medicine, 2016, 13, 636-646.	1.6	77
8	In situ chondrogenic differentiation of human adipose tissue-derived stem cells in a TGF-β1 loaded fibrin–poly(lactide-caprolactone) nanoparticulate complex. Biomaterials, 2009, 30, 4657-4664.	5.7	76
9	Effect of self-assembled peptide–mesenchymal stem cell complex on the progression of osteoarthritis in a rat model. International Journal of Nanomedicine, 2014, 9 Suppl 1, 141.	3.3	74
10	Mechano-Active Scaffold Design Based on Microporous Poly(L-lactide-co-ε-caprolactone) for Articular Cartilage Tissue Engineering: Dependence of Porosity on Compression Force-Applied Mechanical Behaviors. Tissue Engineering, 2006, 12, 449-458.	4.9	72
11	Therapeutic effects of neuropeptide substance P coupled with self-assembled peptide nanofibers on the progression of osteoarthritis in a rat model. Biomaterials, 2016, 74, 119-130.	5.7	65
12	Development and characterization of various osteoarthritis models for tissue engineering. PLoS ONE, 2018, 13, e0194288.	1.1	60
13	Mitigation of hypertrophic scar contraction via an elastomeric biodegradable scaffold. Biomaterials, 2015, 43, 61-70.	5.7	53
14	TGF-β 3 encapsulated PLCL scaffold by a supercritical CO 2 –HFIP co-solvent system for cartilage tissue engineering. Journal of Controlled Release, 2015, 206, 101-107.	4.8	52
15	Self-Assembling Peptide Nanofibers Coupled with Neuropeptide Substance P for Bone Tissue Engineering. Tissue Engineering - Part A, 2015, 21, 1237-1246.	1.6	50
16	Application of an elastic biodegradable poly(L-lactide-co-ε-caprolactone) scaffold for cartilage tissue regeneration. Journal of Biomaterials Science, Polymer Edition, 2008, 19, 1073-1085.	1.9	48
17	Augmented peripheral nerve regeneration through elastic nerve guidance conduits prepared using a porous PLCL membrane with a 3D printed collagen hydrogel. Biomaterials Science, 2020, 8, 6261-6271.	2.6	48
18	Three-Dimensional Electrospun Poly(Lactide-Co-É›-Caprolactone) for Small-Diameter Vascular Grafts. Tissue Engineering - Part A, 2012, 18, 1608-1616.	1.6	43

YOUNGMEE JUNG

#	Article	IF	CITATIONS
19	Nanofibrous Electrospun Heart Decellularized Extracellular Matrix-Based Hybrid Scaffold as Wound Dressing for Reducing Scarring in Wound Healing. Tissue Engineering - Part A, 2018, 24, 830-848.	1.6	39
20	Stem cell recruitment, angiogenesis, and tissue regeneration in substance Pâ€conjugated poly(<scp>l</scp> â€lactideâ€ <i>co</i> â€É>â€caprolactone) nonwoven meshes. Journal of Biomedical Materials Research - Part A, 2015, 103, 2673-2688.	2.1	36
21	Biodegradable vascular stents with high tensile and compressive strength: a novel strategy for applying monofilaments via solid-state drawing and shaped-annealing processes. Biomaterials Science, 2017, 5, 422-431.	2.6	36
22	Covalent immobilization of stem cell inducing/recruiting factor and heparin on cellâ€free smallâ€diameter vascular graft for accelerated <i>in situ</i> tissue regeneration. Journal of Biomedical Materials Research - Part A, 2016, 104, 1352-1371.	2.1	35
23	Skin Regeneration with Self-Assembled Peptide Hydrogels Conjugated with Substance P in a Diabetic Rat Model. Tissue Engineering - Part A, 2018, 24, 21-33.	1.6	35
24	On-Demand Drug Release from Gold Nanoturf for a Thermo- and Chemotherapeutic Esophageal Stent. ACS Nano, 2018, 12, 6756-6766.	7.3	34
25	The effects of dynamic and three-dimensional environments on chondrogenic differentiation of bone marrow stromal cells. Biomedical Materials (Bristol), 2009, 4, 055009.	1.7	33
26	Development of a regenerative porous PLCL nerve guidance conduit with swellable hydrogel-based microgrooved surface pattern via 3D printing. Acta Biomaterialia, 2022, 141, 219-232.	4.1	31
27	A Biocompatible Tissue Scaffold Produced by Supercritical Fluid Processing for Cartilage Tissue Engineering. Tissue Engineering - Part C: Methods, 2013, 19, 181-188.	1.1	30
28	Three-Dimensional Vascularized Lung Cancer-on-a-Chip with Lung Extracellular Matrix Hydrogels for In Vitro Screening. Cancers, 2021, 13, 3930.	1.7	30
29	Stereocomplex Polylactide for Drug Delivery and Biomedical Applications: A Review. Molecules, 2021, 26, 2846.	1.7	29
30	Non-swellable, cytocompatible pHEMA-alginate hydrogels with high stiffness and toughness. Materials Science and Engineering C, 2019, 95, 86-94.	3.8	28
31	In situ chondrogenic differentiation of bone marrow stromal cells in bioactive self-assembled peptide gels. Journal of Bioscience and Bioengineering, 2015, 120, 91-98.	1.1	26
32	Extracellular pH modulating injectable gel for enhancing immune checkpoint inhibitor therapy. Journal of Controlled Release, 2019, 315, 65-75.	4.8	26
33	Poly(L-lactic acid) scaffold with oriented micro-valley surface and superior properties fabricated by solid-state drawing for blood-contact biomaterials. Biofabrication, 2016, 8, 045010.	3.7	25
34	Skin Regeneration with a Scaffold of Predefined Shape and Bioactive Peptide Hydrogels. Tissue Engineering - Part A, 2018, 24, 1518-1530.	1.6	25
35	Substance P/dexamethasone-encapsulated PLGA scaffold fabricated using supercritical fluid process for calvarial bone regeneration. Journal of Tissue Engineering and Regenerative Medicine, 2017, 11, 3469-3480.	1.3	22
36	Enhanced Regeneration of Vascularized Adipose Tissue with Dual 3D-Printed Elastic Polymer/dECM Hydrogel Complex. International Journal of Molecular Sciences, 2021, 22, 2886.	1.8	22

YOUNGMEE JUNG

#	Article	IF	CITATIONS
37	The effect of Substance P/Heparin conjugated PLCL polymer coating of bioinert ePTFE vascular grafts on the recruitment of both ECs and SMCs for accelerated regeneration. Scientific Reports, 2019, 9, 17083.	1.6	20
38	Nanografted Substrata and Triculture of Human Pericytes, Fibroblasts, and Endothelial Cells for Studying the Effects on Angiogenesis. Tissue Engineering - Part A, 2016, 22, 698-706.	1.6	19
39	Mechanical properties of compliant double layered poly(L-lactide-co-É›-caprolactone) vascular graft. Macromolecular Research, 2013, 21, 886-891.	1.0	18
40	Novel Strategy of Lactide Polymerization Leading to Stereocomplex Polylactide Nanoparticles Using Supercritical Fluid Technology. ACS Sustainable Chemistry and Engineering, 2016, 4, 4521-4528.	3.2	17
41	Combined Treatment with Systemic and Local Delivery of Substance P Coupled with Self-Assembled Peptides for a Hind Limb Ischemia Model. Tissue Engineering - Part A, 2016, 22, 545-555.	1.6	17
42	Evolutionarily conserved sequence motif analysis guides development of chemically defined hydrogels for therapeutic vascularization. Science Advances, 2020, 6, eaaz5894.	4.7	17
43	Elastic, double-layered poly (l-lactide-co-ϵ-caprolactone) scaffold for long-term vascular reconstruction. Journal of Bioactive and Compatible Polymers, 2013, 28, 233-246.	0.8	16
44	In Situ Homologous Polymerization of <scp>l</scp> -Lactide Having a Stereocomplex Crystal. Macromolecules, 2018, 51, 6303-6311.	2.2	16
45	Use of Elastic, Porous, and Ultrathin Co ulture Membranes to Control the Endothelial Barrier Function via Cell Alignment. Advanced Functional Materials, 2021, 31, 2008172.	7.8	16
46	3D Printed Porous Methacrylate/Silica Hybrid Scaffold for Bone Substitution. Advanced Healthcare Materials, 2021, 10, e2100117.	3.9	16
47	Creation of polylactide vascular scaffolds with high compressive strength using a novel melt-tube drawing method. Polymer, 2019, 166, 130-137.	1.8	15
48	Effect of platelet-rich plasma with self-assembled peptide on the rotator cuff tear model in rat. Journal of Tissue Engineering and Regenerative Medicine, 2017, 11, 77-85.	1.3	14
49	Strategy for Stereocomplexation of Polylactide Using O/W Emulsion Blending and Applications as Composite Fillers, Drug Carriers, and Self-Nucleating Agents. ACS Sustainable Chemistry and Engineering, 2020, 8, 8752-8761.	3.2	13
50	Substance P/Heparinâ€Conjugated PLCL Mitigate Acute Gliosis on Neural Implants and Improve Neuronal Regeneration via Recruitment of Neural Stem Cells. Advanced Healthcare Materials, 2021, 10, e2100107.	3.9	13
51	Preparation of lotus-leaf-like structured blood compatible poly(É›-caprolactone)-block-poly(l-lactic) Tj ETQq1 1	0.784314 r 2.5	gBT_/Overloc
52	Enhanced Cartilaginous Tissue Formation with a Cell Aggregate-Fibrin-Polymer Scaffold Complex. Polymers, 2017, 9, 348.	2.0	12
53	Supercritical fluid technology parameters affecting size and behavior of stereocomplex polylactide particles and their composites. Polymer Engineering and Science, 2018, 58, 1193-1200.	1.5	12
54	The Regeneration of Large-Sized and Vascularized Adipose Tissue Using a Tailored Elastic Scaffold and dECM Hydrogels, International Journal of Molecular Sciences, 2021, 22, 12560.	1.8	9

YOUNGMEE JUNG

#	Article	IF	CITATIONS
55	Combinatorial Inhibition of Cell Surface Receptors Using Dual Aptamer-Functionalized Nanoconstructs for Cancer Treatment. Pharmaceutics, 2020, 12, 689.	2.0	5
56	Tissue-engineered vascular microphysiological platform to study immune modulation of xenograft rejection. Science Advances, 2021, 7, .	4.7	5
57	Strategy for Securing Key Patents in the Field of Biomaterials. Macromolecular Research, 2020, 28, 87-98.	1.0	4
58	Enhancing adoptive Tâ€cell therapy with fucoidanâ€based <scp>IL</scp> â€2 delivery microcapsules. Bioengineering and Translational Medicine, 2023, 8, .	3.9	4
59	The effects of nanotopography and coculture systems to promote angiogenesis for wound repair. Nanomedicine, 2016, 11, 2997-3007.	1.7	3
60	Detection of Lysyl Oxidase Activity in Tumor Extracellular Matrix Using Peptide-Functionalized Gold Nanoprobes. Cancers, 2021, 13, 4523.	1.7	3