
Kai Sun

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4683297/publications.pdf Version: 2024-02-01

KAI SUN

#	Article	IF	CITATIONS
1	Adipose tissue remodeling and obesity. Journal of Clinical Investigation, 2011, 121, 2094-2101.	8.2	1,455
2	Fibrosis and Adipose Tissue Dysfunction. Cell Metabolism, 2013, 18, 470-477.	16.2	717
3	Dichotomous effects of VEGF-A on adipose tissue dysfunction. Proceedings of the National Academy of Sciences of the United States of America, 2012, 109, 5874-5879.	7.1	337
4	Endotrophin triggers adipose tissue fibrosis and metabolic dysfunction. Nature Communications, 2014, 5, 3485.	12.8	263
5	Hepatocyte Toll-like receptor 4 regulates obesity-induced inflammation and insulin resistance. Nature Communications, 2014, 5, 3878.	12.8	236
6	Xbp1s in Pomc Neurons Connects ER Stress with Energy Balance and Glucose Homeostasis. Cell Metabolism, 2014, 20, 471-482.	16.2	213
7	Selective Inhibition of Hypoxia-Inducible Factor 1α Ameliorates Adipose Tissue Dysfunction. Molecular and Cellular Biology, 2013, 33, 904-917.	2.3	192
8	Zfp423 Maintains White Adipocyte Identity through Suppression of the Beige Cell Thermogenic Gene Program. Cell Metabolism, 2016, 23, 1167-1184.	16.2	187
9	Partial Leptin Reduction as an Insulin Sensitization and Weight Loss Strategy. Cell Metabolism, 2019, 30, 706-719.e6.	16.2	179
10	Inducible overexpression of adiponectin receptors highlight the roles of adiponectin-induced ceramidase signaling in lipid and glucose homeostasis. Molecular Metabolism, 2017, 6, 267-275.	6.5	141
11	Beclin 2 Functions in Autophagy, Degradation of G Protein-Coupled Receptors, and Metabolism. Cell, 2013, 154, 1085-1099.	28.9	130
12	Brown adipose tissue derived VEGF-A modulates cold tolerance and energy expenditure. Molecular Metabolism, 2014, 3, 474-483.	6.5	126
13	VEGF-A–Expressing Adipose Tissue Shows Rapid Beiging and Enhanced Survival After Transplantation and Confers IL-4–Independent Metabolic Improvements. Diabetes, 2017, 66, 1479-1490.	0.6	87
14	Angiopoietin-2 in white adipose tissue improves metabolic homeostasis through enhanced angiogenesis. ELife, 2017, 6, .	6.0	56
15	Critical Role of Matrix Metalloproteinase 14 in Adipose Tissue Remodeling during Obesity. Molecular and Cellular Biology, 2020, 40, .	2.3	56
16	PPARÎ ³ in Vagal Neurons Regulates High-Fat Diet Induced Thermogenesis. Cell Metabolism, 2014, 19, 722-730.	16.2	55
17	Adiponectin alters renal calcium and phosphate excretion through regulation of klotho expression. Kidney International, 2017, 91, 324-337.	5.2	45
18	ERα upregulates Phd3 to ameliorate HIF-1 induced fibrosis and inflammation in adipose tissue. Molecular Metabolism, 2014, 3, 642-651.	6.5	39

Kai Sun

#	Article	IF	CITATIONS
19	Divergent functions of endotrophin on different cell populations in adipose tissue. American Journal of Physiology - Endocrinology and Metabolism, 2016, 311, E952-E963.	3.5	39
20	Dysregulation of amyloid precursor protein impairs adipose tissue mitochondrial function and promotes obesity. Nature Metabolism, 2019, 1, 1243-1257.	11.9	39
21	Short-Term Versus Long-Term Effects of Adipocyte Toll-Like Receptor 4 Activation on Insulin Resistance in Male Mice. Endocrinology, 2017, 158, 1260-1270.	2.8	31
22	Endotrophin, a multifaceted player in metabolic dysregulation and cancer progression, is a predictive biomarker for the response to PPARÎ ³ agonist treatment. Diabetologia, 2017, 60, 24-29.	6.3	31
23	Transient Overexpression of Vascular Endothelial Growth Factor A in Adipose Tissue Promotes Energy Expenditure via Activation of the Sympathetic Nervous System. Molecular and Cellular Biology, 2018, 38, .	2.3	31
24	A NovelADIPOQMutation (p.M40K) Impairs Assembly of High-Molecular-Weight Adiponectin and Is Associated With Early-Onset Obesity and Metabolic Syndrome. Journal of Clinical Endocrinology and Metabolism, 2014, 99, E683-E693.	3.6	21
25	Loss of the liver X receptor LXRÎ \pm /Î ² in peripheral sensory neurons modifies energy expenditure. ELife, 2015, 4, .	6.0	21
26	Novel role of dynaminâ€relatedâ€protein 1 in dynamics of ERâ€lipid droplets in adipose tissue. FASEB Journal, 2020, 34, 8265-8282.	0.5	20
27	Transient inflammatory signaling promotes beige adipogenesis. Science Signaling, 2018, 11, .	3.6	18
28	Cellular and physiological circadian mechanisms drive diurnal cell proliferation and expansion of white adipose tissue. Nature Communications, 2021, 12, 3482.	12.8	18
29	A Unique Role of Carboxylesterase 3 (Ces3) in β-Adrenergic Signaling–Stimulated Thermogenesis. Diabetes, 2019, 68, 1178-1196.	0.6	17
30	The PPARÎ ³ -FGF1 axis: an unexpected mediator of adipose tissue homeostasis. Cell Research, 2012, 22, 1416-1418.	12.0	15
31	Ameliorating cancer cachexia by inhibiting cancer cell release of Hsp70 and Hsp90 with omeprazole. Journal of Cachexia, Sarcopenia and Muscle, 2022, 13, 636-647.	7.3	15
32	Adipose tissue–specific ablation of Ces1d causes metabolic dysregulation in mice. Life Science Alliance, 2022, 5, e202101209.	2.8	12
33	Obesity-Induced Regulator of Calcineurin 1 Overexpression Leads to β-Cell Failure Through Mitophagy Pathway Inhibition. Antioxidants and Redox Signaling, 2020, 32, 413-428.	5.4	11
34	Glycosaminoglycan Modification of Decorin Depends on MMP14 Activity and Regulates Collagen Assembly. Cells, 2020, 9, 2646.	4.1	11
35	Rosiglitazone reverses high fat diet-induced changes in BMAL1 function in muscle, fat, and liver tissue in mice. International Journal of Obesity, 2019, 43, 567-580.	3.4	10
36	Co-staining Blood Vessels and Nerve Fibers in Adipose Tissue. Journal of Visualized Experiments, 2019, , .	0.3	8

#	Article	IF	CITATIONS
37	GHS-R suppression in adipose tissues protects against obesity and insulin resistance by regulating adipose angiogenesis and fibrosis. International Journal of Obesity, 2021, 45, 1565-1575.	3.4	7
38	Regulation of Lipolysis in Adipose Tissue and Clinical Significance. Advances in Experimental Medicine and Biology, 2018, 1090, 199-210.	1.6	5