Francesco Fienga

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/468258/publications.pdf

Version: 2024-02-01

232 papers 5,929 citations

39 h-index 61 g-index

237 all docs

237 docs citations

times ranked

237

7539 citing authors

#	Article	IF	CITATIONS
1	Combined measurements of Higgs boson couplings in proton–proton collisions at \$\$sqrt{s}=13,ext {Te}ext {V} \$\$. European Physical Journal C, 2019, 79, 421.	3.9	355
2	Extraction and validation of a new set of CMS pythia8 tunes from underlying-event measurements. European Physical Journal C, 2020, 80, 4.	3.9	198
3	Precision luminosity measurement in proton–proton collisions at \$\$sqrt{s} = 13,hbox {TeV}\$\$ in 2015 and 2016 at CMS. European Physical Journal C, 2021, 81, 800.	3.9	123
4	Charged-particle nuclear modification factors in PbPb and pPb collisions at s N N = $5.02 \$\$$ sqrt{s_{mathrm{N};mathrm{N}}}= $5.02 \$\$$ TeV. Journal of High Energy Physics, 2017, 2017, 1.	4.7	103
5	Measurements of properties of the Higgs boson decaying into the four-lepton final state in pp collisions at \$\$ sqrt{s}=13 \$\$ TeV. Journal of High Energy Physics, 2017, 2017, 1.	4.7	101
6	Search for new phenomena with the $M_{mathrm} \{T2\}$ M T 2 variable in the all-hadronic final state produced in protonâ e proton collisions at s q T = 13 s, ext {TeV} feV. European Physical Journal C, 2017, 77, 710.	3.9	98
7	Searches for invisible decays of the Higgs boson in pp collisions at s $\$$ sqrt $\{s\}$ $\$$ = 7, 8, and 13 TeV. Journal of High Energy Physics, 2017, 2017, 1.	4.7	95
8	Performance of the CMS Level-1 trigger in proton-proton collisions at $\hat{a}\hat{s}\langle i\rangle s\langle i\rangle = 13$ TeV. Journal of Instrumentation, 2020, 15, P10017-P10017.	1.2	84
9	Measurement of prompt and nonprompt charmonium suppression in $\$$ ext $\{PbPb\}$ collisions at 5.02 $\$$,ext $\{Te\}$ ext $\{V\}$. European Physical Journal C, 2018, 78, 509.	3.9	83
10	Suppression and azimuthal anisotropy of prompt and nonprompt $f(J)^{r}$ production in PbPb collisions at $f(s_{ext}{NN}) = 2.76$ s NN = 2.76 s, mathrm TeV} TeV. European Physical Journal C, 2017, 77, 252.	3.9	82
11	Search for narrow and broad dijet resonances in proton-proton collisions at \$\$ sqrt{s}=13 \$\$ TeV and constraints on dark matter mediators and other new particles. Journal of High Energy Physics, 2018, 2018, 1.	4.7	82
12	Search for production of four top quarks in final states with same-sign or multiple leptons in proton–proton collisions at \$\$sqrt{s}=13\$\$ \$\$,ext {TeV}\$\$. European Physical Journal C, 2020, 80, 75.	3.9	78
13	Search for additional neutral MSSM Higgs bosons in the Ï,, Ï,, final state in proton-proton collisions at \$\$ sqrt{s}=13 \$\$ TeV. Journal of High Energy Physics, 2018, 2018, 1.	4.7	73
14	Searches for physics beyond the standard model with the $M_{mathrm {T2}}$ variable in hadronic final states with and without disappearing tracks in protonâ e proton collisions at $s=13,ext {V}$ s. European Physical Journal C, 2020, 80, 3.	3.9	70
15	Measurement of the f^- mathrm f^- overline mathrm f^- production cross section, the top quark mass, and the strong coupling constant using dilepton events in pp collisions at. European Physical Journal C, 2019, 79, 368.	3.9	68
16	Search for electroweak production of charginos and neutralinos in multilepton final states in proton-proton collisions at \$\$ sqrt{s}=13 \$\$ TeV. Journal of High Energy Physics, 2018, 2018, 1.	4.7	63
17	Search for dark matter produced with an energetic jet or a hadronically decaying W or Z boson at s = $13 $ \$\$ sqrt{s}=13 \$\$ TeV. Journal of High Energy Physics, 2017, 2017, 1.	4.7	62
18	Measurement of the inelastic proton-proton cross section at $\$$ sqrt $\{s\}=13$ $\$$ TeV. Journal of High Energy Physics, 2018, 2018, 1.	4.7	62

#	Article	IF	CITATIONS
19	Measurement of the weak mixing angle using the forward–backward asymmetry of Drell–Yan events in \$\$mathrm {p}mathrm {p}\$\$ p p collisions at 8 \$\$,ext {TeV}\$\$ TeV. European Physical Journal C, 2018, 78, 701.	3.9	58
20	Search for physics beyond the standard model in events with two leptons of same sign, missing transverse momentum, and jets in proton–proton collisions at \$\$sqrt{s} = 13,ext {TeV} \$\$. European Physical Journal C, 2017, 77, 578.	3.9	57
21	Combined search for electroweak production of charginos and neutralinos in proton-proton collisions at $\$$ sqrt $\{s\}=13$ $\$$ TeV. Journal of High Energy Physics, 2018, 2018, 1.	4.7	57
22	Measurements of Higgs boson properties in the diphoton decay channel in proton-proton collisions at $\$$ sqrt $\{s\}=13$ $\$$ TeV. Journal of High Energy Physics, 2018, 2018, 1.	4.7	57
23	Search for charged Higgs bosons in the H± â†' τ±ντ decay channel in proton-proton collisions at \$\$ sqrt{s}=13 \$\$ TeV. Journal of High Energy Physics, 2019, 2019, 1.	4.7	54
24	Search for supersymmetry in proton-proton collisions at 13 TeV in final states with jets and missing transverse momentum. Journal of High Energy Physics, 2019, 2019, 1.	4.7	54
25	Measurement of prompt and nonprompt $\mbox{mathrm{J}/{psi}}$ production in $\mbox{mathrm {p}mathrm {p}}$ p p and $\mbox{mathrm {p}mathrm {Pb}}$ p Pb collisions at \mbox{sqrt} mathrm {NN}} =5.02,ext {TeV} \$\$ s. European Physical Journal C, 2017, 77, 269.	3.9	53
26	Measurement of double-differential cross sections for top quark pair production in pp collisions at $\$$ sqrt $\{s\} = 8$ \$ $s = 8$ \$,ext $\{TeV\}$ \$\$ TeV and impact on parton distribution functions. European Physical Journal C, 2017, 77, 459.	3.9	52
27	Measurements of the $\$ mathrm {p}mathrm {p}ightarrow mathrm{Z}mathrm{Z}\$\$ p p ât' Z Z production cross section and the $\$ mathrm{Z}ightarrow 4ell \$\$ Z ât' 4 â," branching fraction, and constraints on anomalous triple gauge couplings at. European Physical Journal C, 2018, 78, 165.	3.9	52
28	Search for a heavy pseudoscalar boson decaying to a Z and a Higgs boson at $\$$ sqrt $\{s\}=13$,ext $\{Te\}$ ext $\{V\}$ $\$$. European Physical Journal C, 2019, 79, 564.	3.9	50
29	Observation of Y(1S) pair production in proton-proton collisions at $s=8$ \$\$ sqrt{s}=8 \$\$ TeV. Journal of High Energy Physics, 2017, 2017, 1.	4.7	48
30	Search for vector-like quarks in events with two oppositely charged leptons and jets in proton \hat{s} proton collisions at $\frac{s}{r} = 13$, ext Te ext V $$$ s = 13 Te. European Physical Journal C, 2019, 79, 364.	3.9	48
31	Search for third-generation scalar leptoquarks decaying to a top quark and a $\$$ au $\$$ i, lepton at $\$$ sqrt $\{s\}=13$,ext $\{Te\}$ ext $\{V\}$ $\$$ s = 13 Te. European Physical Journal C, 2018, 78, 707.	3.9	46
32	Search for standard model production of four top quarks with same-sign and multilepton final states in protonâ \in "proton collisions at \$\$sqrt{s} = 13,ext {TeV} \$\$ s = 13 TeV. European Physical Journal C, 2018, 78, 140.	3.9	44
33	Search for natural and split supersymmetry in proton-proton collisions at $\$\$$ sqrt $\$\$=13$ $\$\$$ TeV in final states with jets and missing transverse momentum. Journal of High Energy Physics, 2018, 2018, 1.	4.7	43
34	Search for vector-like T and B quark pairs in final states with leptons at $\$$ sqrt $\{s\}=13$ $\$$ TeV. Journal of High Energy Physics, 2018, 2018, 1.	4.7	42
35	Search for low mass vector resonances decaying into quark-antiquark pairs in proton-proton collisions at $s=13 $ \$\$ sqrt{ s }=13 \$\$ TeV. Journal of High Energy Physics, 2018, 2018, 1.	4.7	42
36	Search for third-generation scalar leptoquarks and heavy right-handed neutrinos in final states with two tau leptons and two jets in proton-proton collisions at $s=13 \$$ sqrt $\{s\}=13 \$$ TeV. Journal of High Energy Physics, 2017, 2017, 1.	4.7	41

#	Article	IF	CITATIONS
37	Measurement of the $\mbox{mathrm{t}}$ overline{mathrm{t}} \$\$ t t \mbox{A}^- production cross section using events in the \$\$mathrm {e}mu \$\$ e \mbox{I} 4 final state in pp collisions at \$\$sqrt{s}=13,ext {TeV} \$\$ s = 13 TeV. European Physical Journal C, 2017, 77, 172.	3.9	40
38	Search for new physics in dijet angular distributions using proton–proton collisions at \$\$\$qrt{s}=13hbox {TeV}\$\$ and constraints on dark matter and other models. European Physical Journal C, 2018, 78, 789.	3.9	40
39	Measurement of the top quark mass in the all-jets final state at $\$$ sqrt $\{s\}=13$,ext $\{TeV\}$ $\$$ s = 13 TeV and combination with the lepton+jets channel. European Physical Journal C, 2019, 79, 313.	3.9	40
40	Search for heavy Majorana neutrinos in same-sign dilepton channels in proton-proton collisions at \$\$ sqrt{s}=13 \$\$ TeV. Journal of High Energy Physics, 2019, 2019, 1.	4.7	40
41	Measurement of the Higgs boson production rate in association with top quarks in final states with electrons, muons, and hadronically decaying tau leptons at $\$$ sqrt $\{s\} = 13$,ext $\{Te\}$ ext $\{V\}$ $\$$. European Physical Journal C, 2021, 81, 378.	3.9	40
42	Measurement of differential cross sections for $\$\{ext \{Z\}\}\$ Z boson production in association with jets in proton-proton collisions at $\$sqrt\{s\} = 13,ext \{TeV\}\$ s = 13 TeV. European Physical Journal C, 2018, 78, 965.	3.9	39
43	Search for dark matter produced in association with heavy-flavor quark pairs in proton-proton collisions at $\$$ sqrt $\{s\}$ = 13,ext $\{TeV\}$ $\$$ s = 13 TeV. European Physical Journal C, 2017, 77, 845.	3.9	38
44	Search for heavy resonances that decay into a vector boson and a Higgs boson in hadronic final states at $\$$ sqrt $\{s\} = 13$ \$\$, ext $\{TeV\}$ \$\$ TeV. European Physical Journal C, 2017, 77, 636.	3.9	38
45	Evidence for associated production of a Higgs boson with a top quark pair in final states with electrons, muons, and hadronically decaying \ddot{l} , leptons at \$\$ sqrt{s}=13 \$\$ TeV. Journal of High Energy Physics, 2018, 2018, 1.	4.7	38
46	Search for a new scalar resonance decaying to a pair of Z bosons in proton-proton collisions at $\$$ sqrt $\{s\}=13$ $\$$ TeV. Journal of High Energy Physics, 2018, 2018, 1.	4.7	37
47	Search for resonant and nonresonant Higgs boson pair production in the b b $\hat{A}^ \hat{a}$, " $\hat{1}$ / $2\hat{a}$, " $\hat{1}$ / $2\hat{a}$," " $\hat{1}$ / $2\hat{a}$, " $\hat{1}$ / $2\hat{a}$," " $\hat{1}$ / $2\hat{a}$, " $\hat{1}$ / $2\hat{a}$," " $\hat{1}$ / $2\hat{a}$, " $\hat{1}$ / $2\hat{a}$," " $\hat{1}$ / $2\hat{a}$, " $\hat{1}$ / $2\hat{a}$," " $\hat{1}$ / $2\hat{a}$, " $\hat{1}$ / $2\hat{a}$," " $\hat{1}$ / $2\hat{a}$, " $\hat{1}$ / $2\hat{a}$," " $\hat{1}$ / $2\hat{a}$, " $\hat{1}$ / $2\hat{a}$," " $\hat{1}$ / $2\hat{a}$, " $\hat{1}$ / $2\hat{a}$," " $\hat{1}$ / $2\hat{a}$, " $\hat{1}$ / $2\hat{a}$," "	4.7	36
48	Measurement of the cross section for top quark pair production in association with a W or Z boson in proton-proton collisions at $\$$ sqrt $\{s\}=13$ $\$$ TeV. Journal of High Energy Physics, 2018, 2018, 1.	4.7	35
49	Measurement of exclusive $\mbox{mathrm {Upsilon }$$ photoproduction from protons in $$mathrm {p}$$Pb collisions at $$qrt{smash [b]{s_{_{mathrm {NN}}}}} = 5.02,ext {TeV} $$. European Physical Journal C, 2019, 79, 277.$	3.9	35
50	Measurements of production cross sections of the Higgs boson in the four-lepton final state in proton–proton collisions at \$\$sqrt{s} = 13,ext {TeV} \$\$. European Physical Journal C, 2021, 81, 488.	3.9	35
51	Search for an exotic decay of the Higgs boson to a pair of light pseudoscalars in the final state of two muons and two I,, leptons in proton-proton collisions at \$\$ sqrt{s}=13 \$\$ TeV. Journal of High Energy Physics, 2018, 2018, 1.	4.7	34
52	Measurement of the top quark mass with lepton+jets final states using $\$$ mathrm {p} $\$$ mathrm {p} $\$$ mathrm {p} $\$$ s collisions at $\$$ sqrt{s}=13,ext {TeV} $\$$ s. European Physical Journal C, 2018, 78, 891.	3.9	34
53	Search for a heavy right-handed W boson and a heavy neutrino in events with two same-flavor leptons and two jets at $\$$ sqrt $\$$ TeV. Journal of High Energy Physics, 2018, 2018, 1.	4.7	34
54	Search for single production of vector-like quarks decaying to a top quark and a \$\$mathrm {W} \$\$ W boson in proton–proton collisions at \$\$sqrt{s} = 13 ,ext {TeV} \$\$ s = 13 TeV. European Physical Journal C, 2019, 79, 90.	3.9	34

#	Article	IF	CITATIONS
55	Search for heavy neutrinos and third-generation leptoquarks in hadronic states of two \ddot{l} , leptons and two jets in proton-proton collisions at \$\$ $qt_s=13 $ \$ TeV. Journal of High Energy Physics, 2019, 2019, 1.	4.7	33
56	Measurement of exclusive $\{\{\{uprho_{}^{}\}\}_{}^{}\}\{\{left(\{770\}ight)\}\{\}_{}^{}\}\}\}$ $\{0\}$ \$\$\$Aphotoproduction in ultraperipheral pPb collisions at \$\$sqrt{smash [b]{s_{_{mathrm}}}}} = 5.02,ext {Te}ext {V} \$\$. European Physical Journal C, 2019, 79, 702.	3.9	33
57	Search for dark matter produced in association with a leptonically decaying \$\${mathrm{Z}} \$\$ boson in proton–proton collisions at \$\$sqrt{s}=13,ext {Te}ext {V} \$\$. European Physical Journal C, 2021, 81, 13.	3.9	33
58	Search for top squark pair production using dilepton final states in $\{p\}$ {ext $\{p\}$ } \$ collision data collected at $\{p\}$ = 13,ext $\{TeV\}$ \$\$. European Physical Journal C, 2021, 81, 3.	3.9	33
59	Measurement of \$\$hbox {t}{ar{hbox {t}}}\$\$ normalised multi-differential cross sections in \$\${ext {p}}{ext {p}}\$\$ collisions at \$\$sqrt{s}=13,{ext {TeV}} \$\$, and simultaneous determination of the strong coupling strength, top quark pole mass, and parton distribution functions. European Physical Journal C. 2020, 80, 1.	3.9	33
60	Searches for pair production of third-generation squarks in $\$$ sqrt $\{s\}=13$ \$\$ s = 13 \$\$,ext {TeV}\$\$ TeV pp collisions. European Physical Journal C, 2017, 77, 327.	3.9	32
61	Search for top squark pair production in pp collisions at $s=13 \$\$ $ sqrt $\{s\}=13 \$\$ $ TeV using single lepton events. Journal of High Energy Physics, 2017, 2017, 1.	4.7	31
62	Search for disappearing tracks as a signature of new long-lived particles in proton-proton collisions at $\$$ sqrt $\{s\}=13$ $\$$ TeV. Journal of High Energy Physics, 2018, 2018, 1.	4.7	31
63	A multi-dimensional search for new heavy resonances decaying to boosted $\$ ext{ W }{}{}\$\$ \$\$ext{ W }{}{}\$\$ \$\$ext{ W }{}{}\$\$ \$\$ext{ Z }{}{}\$\$ \$\$ext{ Z }{}{}\$\$ boson pairs in the dijet final state at 13Â\$\$ext {Te}ext {V}\$\$. European Physical Journal C, 2020, 80, 237.	3.9	31
64	A search for new phenomena in pp collisions at $\$\$qrt\{s\} = 13$,ext TeV $\$\$ s = 13$ TeV in final states with missing transverse momentum and at least one jet using the $\$\$alpha _{mathrm {T}}\$\$ \hat{l} \pm T$ variable. European Physical Journal C, 2017, 77, 294.	3.9	29
65	Search for light bosons in decays of the 125 GeV Higgs boson in proton-proton collisions at s = 8 $\$$ sqrt{s}=8 $\$$ TeV. Journal of High Energy Physics, 2017, 2017, 1.	4.7	29
66	Search for lepton flavour violating decays of the Higgs boson to $\hat{l}/\!\!/4\hat{l}$, and $e\hat{l}$, in proton-proton collisions at \$\$ sqrt{s}=13 \$\$ TeV. Journal of High Energy Physics, 2018, 2018, 1.	4.7	29
67	Observation of proton-tagged, central (semi)exclusive production of high-mass lepton pairs in pp collisions at 13 TeV with the CMS-TOTEM precision proton spectrometer. Journal of High Energy Physics, 2018, 2018, 1.	4.7	29
68	Search for dark matter produced in association with a Higgs boson decaying to a pair of bottom quarks in protonâ \in "proton collisions at \$\$sqrt{s}=13,ext {Te}ext {V} \$\$ s = 13 Te. European Physical Journal C, 2019, 79, 280.	3.9	29
69	Real-time dosimetry with radiochromic films. Scientific Reports, 2019, 9, 5307.	3.3	29
70	Measurements of $\$ mathrm{t}overline{mathrm{t}} \$\$ differential cross sections in proton-proton collisions at \$\$ sqrt{mathrm{s}}=13 \$\$ TeV using events containing two leptons. Journal of High Energy Physics, 2019, 2019, 1.	4.7	28
71	Search for \$\$ mathrm{t}overline{mathrm{t}}mathrm{H} \$\$ production in the \$\$ mathrm{H}o mathrm{b}overline{mathrm{b}} \$\$ decay channel with leptonic \$\$ mathrm{t}overline{mathrm{t}} \$\$ decays in proton-proton collisions at \$\$ sqrt{s}=13 \$\$ TeV. Journal of High Energy Physics, 2019, 2019, 1.	4.7	28
72	Search for pair production of vector-like T and B quarks in single-lepton final states using boosted jet substructure in proton-proton collisions at $\$$ sqrt $\{s\}=13$ $\$$ TeV. Journal of High Energy Physics, 2017, 2017, 1.	4.7	27

#	Article	IF	CITATIONS
73	Search for new physics in events with a leptonically decaying Z boson and a large transverse momentum imbalance in proton–proton collisions at \$\$sqrt{s} \$\$ s = 13 \$\$,ext {TeV}\$\$ TeV. European Physical Journal C, 2018, 78, 291.	3.9	27
74	Measurements of Higgs boson production cross sections and couplings in the diphoton decay channel at $\$$ sqrt{mathrm{s}} $\$$ = 13 TeV. Journal of High Energy Physics, 2021, 2021, 1.	4.7	27
75	Search for a charged Higgs boson decaying to charm and bottom quarks in proton-proton collisions at $\$$ sqrt $\{s\}=8$ $\$$ TeV. Journal of High Energy Physics, 2018, 2018, 1.	4.7	26
76	Search for high-mass resonances in final states with a lepton and missing transverse momentum at $\$$ sqrt $\{s\}=13$ $\$$ TeV. Journal of High Energy Physics, 2018, 2018, 1.	4.7	25
77	Search for new particles decaying to a jet and an emerging jet. Journal of High Energy Physics, 2019, 2019, 1.	4.7	24
78	Measurements of $f^{p}} {\mathrm{p}} {\mathrm{p}$	3.9	24
79	Measurement of the jet mass in highly boosted $\$ {mathrm{t}}overline{mathrm{t}}\$\$ events from pp collisions at \$\$sqrt{s}=8\$\$ \$\$,ext {TeV}\$\$. European Physical Journal C, 2017, 77, 467.	3.9	23
80	Search for heavy resonances decaying to tau lepton pairs in proton-proton collisions at $s=13 $ \$\$ $sqrt{s}=13 $ \$\$ TeV. Journal of High Energy Physics, 2017, 2017, 1.	4.7	23
81	Measurement of the top quark mass using single top quark events in proton-proton collisions at \$\$\$qrt{s}= 8\$\$ s = 8 ÂTeV. European Physical Journal C, 2017, 77, 354.	3.9	23
82	Measurement of the triple-differential dijet cross section in proton-proton collisions at $\frac{s}=0$ and constraints on parton distribution functions. European Physical Journal C, 2017, 77, 746.	3.9	23
83	Searches for pair production of charginos and top squarks in final states with two oppositely charged leptons in proton-proton collisions at $$$ sqrt ${s}=13$ $$$ TeV. Journal of High Energy Physics, 2018, 2018, 1.	4.7	23
84	Search for resonant $\$ mathrm{t}-overline{mathrm{t}} \$\$ production in proton-proton collisions at \$\$ sqrt{s}=13 \$\$ TeV. Journal of High Energy Physics, 2019, 2019, 1.	4.7	23
85	Search for physics beyond the standard model in events with jets and two same-sign or at least three charged leptons in proton-proton collisions at $\frac{1}{s}=13,{ext {TeV}} $ \$. European Physical Journal C, 2020, 80, 752.	3.9	23
86	Search for dark matter and unparticles in events with a Z boson and missing transverse momentum in proton-proton collisions at $\$$ sqrt $\{s\}=13$ $\$$ TeV. Journal of High Energy Physics, 2017, 2017, 1.	4.7	23
87	Search for t t \hat{A}^- \$\$ mathrm{t}overline{mathrm{t}} \$\$ resonances in highly boosted lepton+jets and fully hadronic final states in proton-proton collisions at s = 13 \$\$ sqrt{s}=13 \$\$ TeV. Journal of High Energy Physics, 2017, 2017, 1.	4.7	22
88	Search for massive resonances decaying into WW, WZ or ZZ bosons in proton-proton collisions at s = $13 $ \$\$ sqrt{s}= $13 $ \$\$ TeV. Journal of High Energy Physics, 2017, 2017, 1.	4.7	22
89	Search for direct production of supersymmetric partners of the top quark in the all-jets final state in proton-proton collisions at $s=13$ \$\$ sqrt{s}=13 \$\$ TeV. Journal of High Energy Physics, 2017, 2017, 1.	4.7	22
90	Search for heavy neutrinos or third-generation leptoquarks in final states with two hadronically decaying \ddot{l}_n leptons and two jets in proton-proton collisions at $s=13$ \$\$ sqrt $s=13$ \$\$ TeV. Journal of High Energy Physics, 2017, 2017, 1.	4.7	22

#	Article	lF	CITATIONS
91	Search for direct pair production of supersymmetric partners to the \$\${uptau }_{}^{}\$\$ lepton in proton–proton collisions at \$\$sqrt{s}=13,ext {TeV} \$\$. European Physical Journal C, 2020, 80, 189.	3.9	22
92	Measurement of differential cross sections and charge ratios for t-channel single top quark production in proton–proton collisions at \$\$sqrt{s}=13\$\$ \$\$,ext {Te}ext {V}\$\$. European Physical Journal C, 2020, 80, 370.	3.9	22
93	Search for associated production of a Z boson with a single top quark and for tZ flavour-changing interactions in pp collisions at $s = 8 $ sqrt $\{s\}=8 $ TeV. Journal of High Energy Physics, 2017, 2017, 1.	4.7	21
94	Search for supersymmetry in events with a \ddot{i} , lepton pair and missing transverse momentum in proton-proton collisions at \$\$ sqrt{s}=13 \$\$ TeV. Journal of High Energy Physics, 2018, 2018, 1.	4.7	21
95	Search for beyond the standard model Higgs bosons decaying into a $$$ mathrm{b}overline{mathrm{b}} \$\$ pair in pp collisions at $$$ sqrt{s}=13 \$\$ TeV. Journal of High Energy Physics, 2018, 2018, 1.	4.7	21
96	A novel method for EBT3 Gafchromic films read-out at high dose levels. Physica Medica, 2019, 61, 77-84.	0.7	21
97	Search for dark matter in events with energetic, hadronically decaying top quarks and missing transverse momentum at \$\$ sqrt{s}=13 \$\$ TeV. Journal of High Energy Physics, 2018, 2018, 1.	4.7	20
98	Search for rare decays of $\$$ mathrm {Z}\$\$ Z and Higgs bosons to $\$$ {mathrm {J}/psi } $\$$ \$ J / $\ddot{\Gamma}$ and a photon in proton-proton collisions at $\$$ sqrt{s}\$\$ s = 13 $\$$,ext {TeV}\$\$ TeV. European Physical Journal C, 2019, 79, 94.	3.9	20
99	Search for new phenomena in final states with two opposite-charge, same-flavor leptons, jets, and missing transverse momentum in pp collisions at $$$ sqrt ${s}=13 $ \$ TeV. Journal of High Energy Physics, 2018, 2018, 1.	4.7	19
100	Search for charged Higgs bosons produced in vector boson fusion processes and decaying into vector boson pairs in proton–proton collisions at \$\$sqrt{s} = 13,{ext {TeV}} \$\$. European Physical Journal C, 2021, 81, 723.	3.9	19
101	Measurement of normalized differential $\$ mathrm{t}overline{mathrm{t}} \$\$ cross sections in the dilepton channel from pp collisions at \$\$ sqrt{s}=13 \$\$ TeV. Journal of High Energy Physics, 2018, 2018, 1.	4.7	18
102	Measurements of the differential jet cross section as a function of the jet mass in dijet events from proton-proton collisions at $\$$ sqrt $\{s\}=13$ $\$$ TeV. Journal of High Energy Physics, 2018, 2018, 1.	4.7	18
103	A novel Lab-on-Fiber Radiation Dosimeter for Ultra-high Dose Monitoring. Scientific Reports, 2018, 8, 17841.	3.3	18
104	Search for resonant pair production of Higgs bosons decaying to bottom quark-antiquark pairs in proton-proton collisions at 13 TeV. Journal of High Energy Physics, 2018, 2018, 1.	4.7	18
105	Measurement of differential cross sections for inclusive isolated-photon and photon+jet production in proton-proton collisions at $\$$ sqrt $\{s\} = 13$,ext $\{TeV\}$ $\$$ s = 13 TeV. European Physical Journal C, 2019, 79, 20.	3.9	18
106	MUSiC: a model-unspecific search for new physics in proton–proton collisions at \$\$sqrt{s} = 13,ext {TeV} \$\$. European Physical Journal C, 2021, 81, 629.	3.9	18
107	Combined searches for the production of supersymmetric top quark partners in proton–proton collisions at \$\$sqrt{s} = 13,ext {Te}ext {V} \$\$. European Physical Journal C, 2021, 81, 970.	3.9	18
108	Search for low-mass dilepton resonances in Higgs boson decays to four-lepton final states in proton–proton collisions at \$\$sqrt{s}=13,ext {TeV} \$\$. European Physical Journal C, 2022, 82, 290.	3.9	18

#	Article	IF	Citations
109	Search for new physics in the monophoton final state in proton-proton collisions at $s=13 $ \$\$ sqrt{s}=13 \$\$ TeV. Journal of High Energy Physics, 2017, 2017, 1.	4.7	17
110	Measurements of jet charge with dijet events in pp collisions at $s=8$ \$\$ sqrt{s}=8 \$\$ TeV. Journal of High Energy Physics, 2017, 2017, 1.	4.7	17
111	Constraints on the double-parton scattering cross section from same-sign W boson pair production in proton-proton collisions at $s=8$ \$\$ sqrt{s}=8 \$\$ TeV. Journal of High Energy Physics, 2018, 2018, 1.	4.7	17
112	Charged-particle nuclear modification factors in XeXe collisions at $\$$ sqrt $\{s_{NN}\}$ = 5.44 $\$$ TeV. Journal of High Energy Physics, 2018, 2018, 1.	4.7	17
113	Search for $Z\hat{I}^3$ resonances using leptonic and hadronic final states in proton-proton collisions at \$\$ sqrt{s}=13 \$\$ TeV. Journal of High Energy Physics, 2018, 2018, 1.	4.7	17
114	Measurement of the production cross section for single top quarks in association with W bosons in proton-proton collisions at $\$$ sqrt $\{s\}=13$ $\$$ TeV. Journal of High Energy Physics, 2018, 2018, 1.	4.7	17
115	Search for the decay of a Higgs boson in the \hat{a} , " \hat{a} ," \hat{a} channel in proton-proton collisions at \$\$ sqrt{s}=13 \$\$ TeV. Journal of High Energy Physics, 2018, 2018, 1.	4.7	17
116	Measurement of charged particle spectra in minimum-bias events from proton–proton collisions at \$\$sqrt{s}=13,ext {TeV} \$\$ s = 13 TeV. European Physical Journal C, 2018, 78, 697.	3.9	17
117	Electroweak production of two jets in association with a Z boson in protonâ \in proton collisions at \$\$sqrt{s}= \$\$ s = 13 \$\$,ext {TeV}\$\$ TeV. European Physical Journal C, 2018, 78, 1.	3.9	17
118	Search for dark matter produced in association with a single top quark or a top quark pair in proton-proton collisions at \$\$ sqrt{s}=13 \$\$ TeV. Journal of High Energy Physics, 2019, 2019, 1.	4.7	17
119	Measurement of associated Z + charm production in proton–proton collisions at \$\$sqrt{s} = 8\$\$ s = 8 \$\$,ext {TeV}\$\$ TeV. European Physical Journal C, 2018, 78, 287.	3.9	16
120	Search for single production of vector-like quarks decaying to a b quark and a Higgs boson. Journal of High Energy Physics, 2018, 2018, 1.	4.7	16
121	A fiber optic sensors monitoring system for the central beam pipe of the CMS experiment. Optics and Laser Technology, 2019, 120, 105650.	4.6	16
122	Search for new physics in top quark production in dilepton final states in proton-proton collisions at $\$$ sqrt $\{s\} = 13$,ext $\{TeV\}$ $\$$ s. European Physical Journal C, 2019, 79, 886.	3.9	16
123	Search for electroweak production of charginos and neutralinos in WH events in proton-proton collisions at \$\$ sqrt{s}=13 \$\$ TeV. Journal of High Energy Physics, 2017, 2017, 1.	4.7	15
124	Measurement of the t t \hat{A}^- \$\$ mathrm{t}overline{mathrm{t}} \$\$ production cross section using events with one lepton and at least one jet in pp collisions at s = 13 \$\$ sqrt{s}=13 \$\$ TeV. Journal of High Energy Physics, 2017, 2017, 1.	4.7	15
125	Search for new physics with dijet angular distributions in proton-proton collisions at $s=13 $ \$\$ sqrt $\{s\}=13 $ \$\$ TeV. Journal of High Energy Physics, 2017, 2017, 1.	4.7	15
126	Search for a singly produced third-generation scalar leptoquark decaying to a \ddot{l} , lepton and a bottom quark in proton-proton collisions at \$\$ sqrt{s}=13 \$\$ TeV. Journal of High Energy Physics, 2018, 2018, 1.	4.7	15

#	Article	IF	Citations
127	Measurement of b hadron lifetimes in pp collisions at $\$\$qrt\{s\} = 8\$\$ s = 8 \$\$,ext \{Te\}ext \{V\}\$\$$ TeV. European Physical Journal C, 2018, 78, 457.	3.9	15
128	Search for new physics in final states with a single photon and missing transverse momentum in proton-proton collisions at $\$$ sqrt $\{s\}=13$ $\$$ TeV. Journal of High Energy Physics, 2019, 2019, 1.	4.7	15
129	Search for associated production of dark matter with a Higgs boson decaying to b b \hat{A}^- \$\$ mathrm{b}overline{mathrm{b}} \$\$ or $\hat{I}^3\hat{I}^3$ at s = 13 \$\$ sqrt{s}=13 \$\$ TeV. Journal of High Energy Physics, 2017, 2017, 1.	4.7	14
130	Search for electroweak production of a vector-like quark decaying to a top quark and a Higgs boson using boosted topologies in fully hadronic final states. Journal of High Energy Physics, 2017, 2017, 1.	4.7	14
131	Search for supersymmetry in events with at least one photon, missing transverse momentum, and large transverse event activity in proton-proton collisions at $s=13$ \$\$ sqrt{s}=13 \$\$ TeV. Journal of High Energy Physics, 2017, 2017, 1.	4.7	14
132	Search for black holes and sphalerons in high-multiplicity final states in proton-proton collisions at $\$ sqrt{s}=13 \$\$ TeV. Journal of High Energy Physics, 2018, 2018, 1.	4.7	14
133	Studies of \$\${mathrm {B}} ^{*}_{{mathrm {s}}2}(5840)^0 \$\$ B s 2 \hat{a} — (5840) 0 and \$\${mathrm {B}}		

#	Article	IF	CITATIONS
145	Search for top quark partners with charge $5/3$ in the same-sign dilepton and single-lepton final states in proton-proton collisions at \$\$ sqrt{s}=13 \$\$ TeV. Journal of High Energy Physics, 2019, 2019, 1.	4.7	13
146	Search for contact interactions and large extra dimensions in the dilepton mass spectra from proton-proton collisions at $\$$ sqrt $\{s\}=13$ $\$$ TeV. Journal of High Energy Physics, 2019, 2019, 1.	4.7	13
147	Search for supersymmetry in final states with two or three soft leptons and missing transverse momentum in proton-proton collisions at $\$$ sqrt $\{s\}$ $\$$ = 13 TeV. Journal of High Energy Physics, 2022, 2022, 1.	4.7	13
148	Comparing transverse momentum balance of b jet pairs in pp and PbPb collisions at $\$$ sqrt{s_{mathrm{NN}}}=5.02 $\$$ TeV. Journal of High Energy Physics, 2018, 2018, 1.	4.7	12
149	Measurement of the groomed jet mass in PbPb and pp collisions at $\$$ sqrt $\{s_{mathrm{NN}}\}=5.02 \$$ TeV. Journal of High Energy Physics, 2018, 2018, 1.	4.7	12
150	Search for decays of stopped exotic long-lived particles produced in proton-proton collisions at $\$$ sqrt $\{s\}=13$ $\$$ TeV. Journal of High Energy Physics, 2018, 2018, 1.	4.7	12
151	Search for dark matter produced in association with a Higgs boson decaying to $\hat{I}^3\hat{I}^3$ or \hat{I}_3 ,	4.7	12
152	Measurement of the energy density as a function of pseudorapidity in proton–proton collisions at \$\$sqrt{s} =13,ext {TeV} \$\$. European Physical Journal C, 2019, 79, 1.	3.9	12
153	Search for heavy resonances decaying into two Higgs bosons or into a Higgs boson and a W or Z boson in proton-proton collisions at 13 TeV. Journal of High Energy Physics, 2019, 2019, 1.	4.7	12
154	Measurement of the average very forward energy as a function of the track multiplicity at central pseudorapidities in proton-proton collisions at $\$$ sqrt $\{s\}=13$,ext $\{TeV\}$ $\$$ s. European Physical Journal C, 2019, 79, 893.	3.9	12
155	Development and validation of HERWIGÂ7 tunes from CMS underlying-event measurements. European Physical Journal C, 2021, 81, 312.	3.9	12
156	Search for a right-handed W boson and a heavy neutrino in proton-proton collisions at $\$$ sqrt $\{s\}$ \$ = 13 TeV. Journal of High Energy Physics, 2022, 2022, 1.	4.7	12
157	Measurement of the semileptonic t t \hat{A}^- \$\$ mathrm{t}overline{mathrm{t}} \$\$ + \hat{I}^3 production cross section in pp collisions at s = 8 \$\$ sqrt{s}=8 \$\$ TeV. Journal of High Energy Physics, 2017, 2017, 1.	4.7	11
158	Search for heavy resonances decaying into a vector boson and a Higgs boson in final states with charged leptons, neutrinos and b quarks at $\$$ sqrt $\{s\}=13$ $\$$ TeV. Journal of High Energy Physics, 2018, 2018, 1.	4.7	11
159	Search for a heavy resonance decaying to a pair of vector bosons in the lepton plus merged jet final state at \$\$ sqrt{s}=13 \$\$ TeV. Journal of High Energy Physics, 2018, 2018, 1.	4.7	11
160	Search for supersymmetry in events with a photon, jets, \$\$mathrm {b}\$\$-jets, and missing transverse momentum in proton–proton collisions at 13\$\$,ext {Te}ext {V}\$\$. European Physical Journal C, 2019, 79, 444.	3.9	11
161	Search for nonresonant Higgs boson pair production in the \$\$ mathrm{b}overline{mathrm{b}} sqrt{s} $= 13$ TeV. Journal of High Energy Physics, 2019, 2019, 1.	4.7	11
162	Study of the underlying event in top quark pair production in $\$$ mathrm $\{p\}$ mathrm $\{p\}$ \$\$ p p collisions at 13 $\$$ ext $\{V\}$ \$\$ Te. European Physical Journal C, 2019, 79, 123.	3.9	11

#	Article	IF	Citations
163	Measurement of electroweak production of a $\mathrm{Smathrm}\{W\}$ \$\$ boson in association with two jets in protonâ \in "proton collisions at $\mathrm{Sqrt}\{s\}=13$,ext {Te}ext {V} \$\$. European Physical Journal C, 2020, 80, 43.	3.9	11
164	Measurements of the pp \hat{a}^{\dagger} $\hat{W}^{\hat{1}\hat{3}\hat{1}\hat{3}}$ and pp \hat{a}^{\dagger} $\hat{Z}^{\hat{1}\hat{3}\hat{1}\hat{3}}$ cross sections and limits on anomalous quartic gauge coupling at s = 8 \$\$ sqrt{s}=8 \$\$ TeV. Journal of High Energy Physics, 2017, 2017, 1.	S 4.7	10
165	Measurement of the inclusive energy spectrum in the very forward direction in proton-proton collisions at $s=13$ \$\$ sqrt{s}=13 \$\$ TeV. Journal of High Energy Physics, 2017, 2017, 1.	4.7	10
166	Search for a light pseudoscalar Higgs boson produced in association with bottom quarks in pp collisions at $\$$ sqrt $\{s\}=8$ $\$$ TeV. Journal of High Energy Physics, 2017, 2017, 1.	4.7	10
167	Study of dijet events with a large rapidity gap between the two leading jets in pp collisions at \$\$\$qrt{s}=7\$\$ \$\$,ext {TeV}\$\$. European Physical Journal C, 2018, 78, 242.	3.9	10
168	Measurement of the \$\$mathrm {Z}/gamma ^{*} ightarrow au au \$\$ $Z / \hat{I}^3 \hat{a} - \hat{a}^* \hat{I}_n \hat{I}_n$, cross section in pp collisions at \$\$sqrt{s} = 13 hbox { TeV}\$\$ s = 13 TeV and validation of \$\$. European Physical Journal C, 2018, 78, 708.	3.9	10
169	Search for a heavy resonance decaying into a Z boson and a vector boson in the $\$ u overline{u}mathrm{q}overline{mathrm{q}} \$\$ final state. Journal of High Energy Physics, 2018, 2018, 1.	4.7	10
170	Search for resonances decaying to a pair of Higgs bosons in the b\$\$ overline{mathrm{b}} \$\$q\$\$ overline{mathrm{q}} \$\$a $^{1}/2$ final state in proton-proton collisions at \$\$ sqrt{s} \$\$ = 13 TeV. Journal of High Energy Physics, 2019, 2019, 1.	4.7	10
171	Evidence for $\$$ ext $\{W\}$ ext $\{W\}$ \$\$ production from double-parton interactions in protonal \mathbb{C} 000, 80, 1.	3.9	10
172	Search for resonances in the mass spectrum of muon pairs produced in association with b quark jets in proton-proton collisions at \$\$ sqrt{s}=8 \$\$ and 13 TeV. Journal of High Energy Physics, 2018, 2018, 1.	4.7	9
173	Search for lepton-flavor violating decays of heavy resonances and quantum black holes to $e^{1/4}$ final states in proton-proton collisions at \$\$ sqrt{s}=13 \$\$ TeV. Journal of High Energy Physics, 2018, 2018, 1.	4.7	9
174	Azimuthal correlations for inclusive 2-jet, 3-jet, and 4-jet events in pp collisions at $\$$ sqrt $\{s\}$ = 13-hbox $\{TeV\}$ \$\$ s = 13 TeV. European Physical Journal C, 2018, 78, 1.	3.9	9
175	Search for a heavy resonance decaying to a top quark and a vector-like top quark in the lepton + jets final state in pp collisions at $\$$ sqrt $\{s\} = 13$,ext $\{TeV\}$ $\$$ s = 13 TeV. European Physical Journal C, 2019, 79, 1.	3.9	9
176	Search for a low-mass Ï,,â^Ï,,+ resonance in association with a bottom quark in proton-proton collisions at \$\$ sqrt{s} \$\$ = 13 TeV. Journal of High Energy Physics, 2019, 2019, 1.	4.7	9
177	Search for a heavy vector resonance decaying to a $f(z) = 13$, where $f(z) = 13$, we have $f(z) = 13$, and a Higgs boson in proton-proton collisions at $f(z) = 13$, and $f(z) = 13$, where $f(z) = 13$, and $f(z) = 13$, where $f(z) = 13$, and f	3.9	9
178	Searches for W′ bosons decaying to a top quark and a bottom quark in proton-proton collisions at 13 TeV. Journal of High Energy Physics, 2017, 2017, 1.	4.7	8
179	Pseudorapidity distributions of charged hadrons in proton-lead collisions at s N N = $5.02 \$\$$ sqrt $\{s_{mathrm{NN}}\}=5.02 \$\$$ and 8.16 TeV. Journal of High Energy Physics, 2018, 2018, 1.	4.7	8
180	Search for a heavy resonance decaying into a Z boson and a Z or W boson in $2\hat{a}$, "2q final states at \$\$ sqrt{s}=13 \$\$ TeV. Journal of High Energy Physics, 2018, 2018, 1.	4.7	8

#	Article	IF	CITATIONS
181	Search for supersymmetry in final states with photons and missing transverse momentum in proton-proton collisions at 13 TeV. Journal of High Energy Physics, 2019, 2019, 1.	4.7	8
182	Azimuthal separation in nearly back-to-back jet topologies in inclusive 2- and 3-jet events in $f(x) = 13$, ext $f(x) = 13$,	3.9	8
183	Full Analog Fiber Optic Monitoring System Based on Arrayed Waveguide Grating. Journal of Lightwave Technology, 2021, 39, 4990-4996.	4.6	8
184	Search for high-mass $Z\hat{l}^3$ resonances in e+eâ ⁻ ' \hat{l}^3 and $\hat{l}^1/4 + \hat{l}^1/4$ â ⁻ ' \hat{l}^3 final states in proton-proton collisions at s = 8 \$\$ sqrt{s}=8 \$\$ and 13 TeV. Journal of High Energy Physics, 2017, 2017, 1.	[;] 4.7	7
185	Study of Thin Double-Gap RPCs for the CMS Muon System. Journal of the Korean Physical Society, 2018, 73, 1080-1087.	0.7	7
186	Search for the associated production of the Higgs boson and a vector boson in proton-proton collisions at $\$$ sqrt{s} $\$$ = 13 TeV via Higgs boson decays to \ddot{I} , leptons. Journal of High Energy Physics, 2019, 2019, 1.	4.7	7
187	Multichannel Approach for Arrayed Waveguide Grating-Based FBG Interrogation Systems. Sensors, 2021, 21, 6214.	3.8	7
188	Search for supersymmetry in events with at least three electrons or muons, jets, and missing transverse momentum in proton-proton collisions at $s=13 $ \$ sqrt{ $s}=13 $ \$ TeV. Journal of High Energy Physics, 2018, 2018, 1.	4.7	6
189	Search for supersymmetry in events with a photon, a lepton, and missing transverse momentum in proton-proton collisions at $\$$ sqrt $\{s\}$ = 13 $\$$ TeV. Journal of High Energy Physics, 2019, 2019, 1.	4.7	6
190	Liquid Resin Infusion Process Validation through Fiber Optic Sensor Technology. Sensors, 2022, 22, 508.	3.8	6
191	Inclusive and differential cross section measurements of single top quark production in association with a Z boson in proton-proton collisions at $\$$ sqrt $\{s\}$ $\$$ = 13 TeV. Journal of High Energy Physics, 2022, 2022, 1.	4.7	6
192	Search for heavy resonances decaying to ZZ or ZW and axion-like particles mediating nonresonant ZZ or ZH production at $\$$ sqrt $\{s\}$ $\$$ = 13 TeV. Journal of High Energy Physics, 2022, 2022, 1.	4.7	6
193	Search for a heavy resonance decaying to a top quark and a vector-like top quark at $s=13 \$\$$ sqrt $\{s\}=13 \$\$$ TeV. Journal of High Energy Physics, 2017, 2017, 1.	4.7	5
194	Measurement of the inclusive $\$ mathrm{t}overline{mathrm{t}} \$\$ cross section in pp collisions at \$\$ sqrt{s}=5.02 \$\$ TeV using final states with at least one charged lepton. Journal of High Energy Physics, 2018, 2018, 1.	4.7	5
195	Search for new phenomena in final states with two opposite-charge, same-flavor leptons, jets, and missing transverse momentum in pp collisions at $s=13$ \$\$ sqrt{s}=13 \$\$ TeV. Journal of High Energy Physics, 2018, 2018, 1.	4.7	5
196	Search for a Wae^2 boson decaying to a vector-like quark and a top or bottom quark in the all-jets final state. Journal of High Energy Physics, 2019, 2019, 1.	4.7	5
197	Search for the pair production of light top squarks in the $e\hat{A}\pm\hat{l}/4\hat{a}$ final state in proton-proton collisions at \$\$ sqrt{s}=13 \$\$ TeV. Journal of High Energy Physics, 2019, 2019, 1.	4.7	5
198	Measurement of single-diffractive dijet production in proton–proton collisions at \$\$sqrt{s} = 8,ext {Te}ext {V} \$\$ with the CMS and TOTEM experiments. European Physical Journal C, 2020, 80, 1164.	3.9	5

#	Article	IF	Citations
199	SHM in CMS Underground Detector at CERN using FBG Sensors. , 0, , .		5
200	Improved-RPC for the CMS muon system upgrade for the HL-LHC. Journal of Instrumentation, 2020, 15, C11012-C11012.	1.2	5
201	Search for flavor-changing neutral current interactions of the top quark and the Higgs boson decaying to a bottom quark-antiquark pair at \$\$ sqrt{s} \$\$ = 13 TeV. Journal of High Energy Physics, 2022, 2022, 1.	4.7	5
202	Search for long-lived particles decaying into muon pairs in proton-proton collisions at \$\$ sqrt{s} \$\$ = 13 TeV collected with a dedicated high-rate data stream. Journal of High Energy Physics, 2022, 2022, .	4.7	5
203	Measurement and QCD analysis of double-differential inclusive jet cross sections in proton-proton collisions at $\$$ sqrt $\{s\}$ $\$$ = 13 TeV. Journal of High Energy Physics, 2022, 2022, 1.	4.7	5
204	Resistive plate chambers for 2013-2014 muon upgrade in CMS at LHC. Journal of Instrumentation, 2014, 9, C10033-C10033.	1.2	4
205	Search for CP violation in t t \hat{A}^- \$\$ toverline{t} \$\$ production and decay in proton-proton collisions at s = 8 \$\$ sqrt{s}=8 \$\$ TeV. Journal of High Energy Physics, 2017, 2017, 1.	4.7	4
206	Measurement of differential cross sections in the kinematic angular variable i^* for inclusive Z boson production in pp collisions at \$\$ sqrt{s}=8 \$\$ TeV. Journal of High Energy Physics, 2018, 2018, 1.	4.7	4
207	Search for ZZ resonances in the $2\hat{a}$, " $2\hat{l}$ ½ final state in proton-proton collisions at 13 TeV. Journal of High Energy Physics, 2018, 2018, 1.	4.7	4
208	Event shape variables measured using multijet final states in proton-proton collisions at $\$$ sqrt $\{s\}=13$ $\$$ TeV. Journal of High Energy Physics, 2018, 2018, 1.	4.7	4
209	Long-term performance and longevity studies of the CMS Resistive Plate Chambers. Journal of Instrumentation, 2018, 13, P08024-P08024.	1.2	4
210	Search for resonant production of second-generation sleptons with same-sign dimuon events in proton–proton collisions at \$\$sqrt{s} = 13,ext {TeV} \$\$ s = 13 TeV. European Physical Journal C, 2019, 79, 305.	3.9	4
211	Search for higgsinos decaying to two Higgs bosons and missing transverse momentum in proton-proton collisions at \$\$ sqrt{s} \$\$ = 13 TeV. Journal of High Energy Physics, 2022, 2022, .	4.7	4
212	Search for top quark partners with charge $5/3$ in proton-proton collisions at $s=13$ \$\$ sqrt{s}=13 \$\$ TeV. Journal of High Energy Physics, 2017, 2017, 1.	4.7	3
213	Inclusive search for supersymmetry in pp collisions at $\$$ sqrt $\{s\}=13$ $\$$ TeV using razor variables and boosted object identification in zero and one lepton final states. Journal of High Energy Physics, 2019, 2019, 1.	4.7	3
214	Search for excited leptons in \hat{a} , " \hat{a} ," " \hat{a} final states in proton-proton collisions at \$\$ sqrt{mathrm{s}}=13 \$\$ TeV. Journal of High Energy Physics, 2019, 2019, 1.	4.7	3
215	Calibration of the CMS hadron calorimeters using proton-proton collision data at â^šs = 13 TeV. Journal of Instrumentation, 2020, 15, P05002-P05002.	1.2	3
216	Simulation of an Optical-to-Digital Converter for High Frequency FBG Interrogator. Lecture Notes in Electrical Engineering, 2020, , 259-265.	0.4	3

#	Article	IF	CITATIONS
217	Measurements of the (mathrm $\{p\}$ mathrm $\{p\}$ ightarrow mathrm $\{Z\}$ mathrm $\{Z\}$) production cross section and the (mathrm $\{Z\}$ ightarrow 4ell) branching fraction, and constraints on anomalous triple gauge couplings at (sqrt $\{s\} = 13$,ext $\{TeV\}$)., 2018, 78, 1.		3
218	Fiber optic sensors structural monitoring of the beam pipe in the CMS experiment at the CERN. , 2015, , .		2
219	Search for new phenomena with multiple charged leptons in proton–proton collisions at \$\$sqrt{s}= 13\$\$ s = 13 \$\$,ext {TeV}\$\$ TeV. European Physical Journal C, 2017, 77, 1.	3.9	2
220	Fast timing measurement for CMS RPC Phase-II upgrade. Journal of Instrumentation, 2018, 13, C09001-C09001.	1.2	2
221	Absolute calibration for film dosimetry. International Journal of Modern Physics Conference Series, 2020, 50, 2060012.	0.7	2
222	Search for a heavy resonance decaying into a top quark and a W boson in the lepton+jets final state at \$\$ sqrt{s} \$\$ = 13 TeV. Journal of High Energy Physics, 2022, 2022, 1.	4.7	2
223	Measurement of the inclusive $\mbox{smathrm{t}}$ mathrm{t} sproduction cross section in proton-proton collisions at $\mbox{smath smath small}$ sqrt{s} $\mbox{smath small}$ = 5.02 TeV. Journal of High Energy Physics, 2022, 2022, 1.	4.7	2
224	Search for heavy resonances decaying to a pair of Lorentz-boosted Higgs bosons in final states with leptons and a bottom quark pair at $$$ sqrt ${s}$ $$$ = 13 TeV. Journal of High Energy Physics, 2022, 2022, .	4.7	2
225	Longevity studies on the CMS-RPC system. Journal of Instrumentation, 2019, 14, C05012-C05012.	1.2	1
226	An innovative extrinsic fiber optic sensor for real-time radiation monitoring. , 2021, , .		1
227	Upgrade of the CMS resistive plate chambers for the high luminosity LHC. Journal of Instrumentation, 2022, 17, C01011.	1.2	1
228	Study of dijet events with large rapidity separation in proton-proton collisions at $\$\$ \cdot \$ = 2.76$ TeV. Journal of High Energy Physics, 2022, 2022, 1.	4.7	1
229	Observation of B\$\$^0\$\$ \$\$ightarrow \$\$ \$\$uppsi \$\$(2S)K\$\$^0_mathrm {S}uppi ^+uppi ^-\$\$ and B\$\$^0_mathrm {s}\$\$ \$\$ightarrow \$\$ \$\$uppsi \$\$(2S)K\$\$^0_mathrm {S}\$\$ decays. European Physical Journal C, 2022, 82, .	3.9	1
230	Search for natural supersymmetry in events with top quark pairs and photons in pp collisions at $\$$ sqrt $\{s\}=8$ $\$$ TeV. Journal of High Energy Physics, 2018, 2018, 1.	4.7	0
231	Innovative lab on fiber dosimeters for ionizing radiation monitoring at ultra-high doses. , 2019, , .		0
232	Fiber optic monitoring system ready for 4-20mA industrial control standard., 2021,,.		0