John A Darling

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4682568/publications.pdf

Version: 2024-02-01

159585 175258 4,096 53 30 citations h-index papers

g-index 55 55 55 4999 docs citations times ranked citing authors all docs

52

#	Article	IF	CITATIONS
1	International shipping as a potent vector for spreading marine parasites. Diversity and Distributions, 2022, 28, 1922-1933.	4.1	6
2	What do you mean by false positive?. Environmental DNA, 2021, 3, 879-883.	5.8	36
3	Assessing cyanobacterial frequency and abundance at surface waters near drinking water intakes across the United States. Water Research, 2021, 201, 117377.	11.3	20
4	Satellite remote sensing to assess cyanobacterial bloom frequency across the United States at multiple spatial scales. Ecological Indicators, 2021, 128, 107822.	6.3	39
5	Quantifying national and regional cyanobacterial occurrence in US lakes using satellite remote sensing. Ecological Indicators, 2020, 111, 105976.	6. 3	55
6	Trends in the detection of aquatic nonâ€indigenous species across global marine, estuarine and freshwater ecosystems: A 50â€year perspective. Diversity and Distributions, 2020, 26, 1780-1797.	4.1	118
7	Metabarcoding quantifies differences in accumulation of ballast water borne biodiversity among three port systems in the United States. Science of the Total Environment, 2020, 749, 141456.	8.0	7
8	The risks of using molecular biodiversity data for incidental detection of species of concern. Diversity and Distributions, 2020, 26, 1116-1121.	4.1	34
9	How to learn to stop worrying and love environmental DNA monitoring. Aquatic Ecosystem Health and Management, 2019, 22, 440-451.	0.6	39
10	Nucleic acids-based tools for ballast water surveillance, monitoring, and research. Journal of Sea Research, 2018, 133, 43-52.	1.6	23
11	A Framework for Understanding Marine Cosmopolitanism in the Anthropocene. Frontiers in Marine Science, 2018, 5, 293.	2.5	57
12	Ballast Water Exchange and Invasion Risk Posed by Intracoastal Vessel Traffic: An Evaluation Using High Throughput Sequencing. Environmental Science & Technology, 2018, 52, 9926-9936.	10.0	32
13	Beyond propagule pressure: importance of selection during the transport stage of biological invasions. Frontiers in Ecology and the Environment, 2018, 16, 345-353.	4.0	59
14	A method for quantifying the number of U.S. lakes with cyanobacterial harmful algal blooms using satellite remote sensing. , 2018 , , .		0
15	Recreational freshwater fishing drives nonâ€native aquatic species richness patterns at a continental scale. Diversity and Distributions, 2017, 23, 692-702.	4.1	31
16	Satellite monitoring of cyanobacterial harmful algal bloom frequency in recreational waters and drinking water sources. Ecological Indicators, 2017, 80, 84-95.	6.3	124
17	Recommendations for developing and applying genetic tools to assess and manage biological invasions in marine ecosystems. Marine Policy, 2017, 85, 54-64.	3.2	74
18	Early detection monitoring for aquatic non-indigenous species: Optimizing surveillance, incorporating advanced technologies, and Aidentifying research needs. Journal of Environmental Management, 2017, 202, 299-310.	7.8	77

#	Article	IF	CITATIONS
19	Marine invasions enter the genomic era: three lessons from the past, and the way forward. Environmental Epigenetics, 2016, 62, 629-642.	1.8	50
20	MOLTOOLS: a workshop on "Molecular tools for monitoring marine invasive species― Biological Invasions, 2015, 17, 809-813.	2.4	2
21	Genetic studies of aquatic biological invasions: closing the gap between research and management. Biological Invasions, 2015, 17, 951-971.	2.4	35
22	High-throughput Illumina sequencing and microsatellite design in Watersipora (Bryozoa), a complex of invasive species. Conservation Genetics Resources, 2014, 6, 1053-1055.	0.8	3
23	Are genes faster than crabs? Mitochondrial introgression exceeds larval dispersal during population expansion of the invasive crab <i>Carcinus maenas</i> Royal Society Open Science, 2014, 1, 140202.	2.4	25
24	How important is intraspecific genetic admixture to the success of colonising populations?. Trends in Ecology and Evolution, 2014, 29, 233-242.	8.7	401
25	Geographic range and structure of cryptic genetic diversity among Pacific North American populations of the non-native amphipod Grandidierella japonica. Biological Invasions, 2013, 15, 2415-2428.	2.4	18
26	Ecology of cryptic invasions: latitudinal segregation among Watersipora (Bryozoa) species. Scientific Reports, 2012, 2, 871.	3.3	46
27	Intracoastal shipping drives patterns of regional population expansion by an invasive marine invertebrate. Ecology and Evolution, 2012, 2, 2557-2566.	1.9	29
28	Complex genetic patterns in closely related colonizing invasive species. Ecology and Evolution, 2012, 2, 1331-1346.	1.9	50
29	From molecules to management: Adopting DNA-based methods for monitoring biological invasions in aquatic environments. Environmental Research, 2011, 111, 978-988.	7.5	383
30	Interspecific Hybridization and Mitochondrial Introgression in Invasive Carcinus Shore Crabs. PLoS ONE, 2011, 6, e17828.	2.5	35
31	Molecular Detection of Invasive Species in Heterogeneous Mixtures Using a Microfluidic Carbon Nanotube Platform. PLoS ONE, 2011, 6, e17280.	2.5	31
32	BIODIVERSITY RESEARCH: Genetic diversity in two introduced biofouling amphipods (<i>Ampithoe) Tj ETQq0 0 0 molecular identification and cryptic diversity. Diversity and Distributions, 2010, 16, 827-839.</i>) rgBT /Ov€ 4.1	erlock 10 Tf 5 30
33	A hitchhiker's guide to the Maritimes: anthropogenic transport facilitates longâ€distance dispersal of an invasive marine crab to Newfoundland. Diversity and Distributions, 2010, 16, 879-891.	4.1	90
34	Genetic Perspectives on Marine Biological Invasions. Annual Review of Marine Science, 2010, 2, 367-393.	11.6	207
35	Genetic analysis reveals multiple cryptic invasive species of the hydrozoan genus Cordylophora. Biological Invasions, 2009, 11, 1869-1882.	2.4	71
36	Genetic analysis across different spatial scales reveals multiple dispersal mechanisms for the invasive hydrozoan <i>Cordylophora</i> in the Great Lakes. Molecular Ecology, 2009, 18, 4827-4840.	3.9	44

#	Article	IF	Citations
37	European green crabs (<i>Carcinus maenas</i>) in the northeastern Pacific: genetic evidence for high population connectivity and currentâ€mediated expansion from a single introduced source population. Diversity and Distributions, 2009, 15, 997-1009.	4.1	58
38	Genetic structure of the benthic amphipod Diporeia (Amphipoda: Pontoporeiidae) and its relationship to abundance in Lake Superior. Canadian Journal of Fisheries and Aquatic Sciences, 2009, 66, 1318-1327.	1.4	12
39	Human-mediated transport determines the non-native distribution of the anemone Nematostella vectensis, a dispersal-limited estuarine invertebrate. Marine Ecology - Progress Series, 2009, 380, 137-146.	1.9	19
40	Global population genetic structure of the starlet anemone Nematostella vectensis: multiple introductions and implications for conservation policy. Biological Invasions, 2008, 10, 1197-1213.	2.4	47
41	Genetic patterns across multiple introductions of the globally invasive crab genus <i>Carcinus</i> Molecular Ecology, 2008, 17, 4992-5007.	3.9	214
42	The Quagga Mussel Invades the Lake Superior Basin. Journal of Great Lakes Research, 2008, 34, 342-350.	1.9	47
43	Microsatellite loci for the invasive colonial hydrozoan <i>Cordylophora caspia</i> Ecology Resources, 2008, 8, 968-970.	4.8	5
44	Highly sensitive detection of invasive shore crab (Carcinus maenas and Carcinus aestuarii) larvae in mixed plankton samples using polymerase chain reaction and restriction fragment length polymorphisms (PCR-RFLP). Aquatic Invasions, 2008, 3, 141-152.	1.6	11
45	Paradox lost: genetic diversity and the success of aquatic invasions. Trends in Ecology and Evolution, 2007, 22, 454-464.	8.7	692
46	DNA-based methods for monitoring invasive species: a review and prospectus. Biological Invasions, 2007, 9, 751-765.	2.4	205
47	Characterization of microsatellite loci in the widely introduced estuarine anemone Nematostella vectensis. Molecular Ecology Notes, 2006, 6, 803-805.	1.7	2
48	The Value of Barcoding. BioScience, 2006, 56, 710.	4.9	1
49	Rising starlet: the starlet sea anemone, Nematostella vectensis. BioEssays, 2005, 27, 211-221.	2.5	189
50	Purine Salvage Pathways in the Apicomplexan Parasite Toxoplasma gondii. Journal of Biological Chemistry, 2004, 279, 31221-31227.	3.4	109
51	Regional population structure of a widely introduced estuarine invertebrate: Nematostella vectensis Stephenson in New England. Molecular Ecology, 2004, 13, 2969-2981.	3.9	51
52	Toxoplasma as a Model Apicomplexan Parasite: Biochemistry, Cell Biology, Molecular Genetics, Genomics and Beyond., 2000, , 143-167.		3
53	Recombinant expression, purification, and characterization of Toxoplasma gondii adenosine kinase. Molecular and Biochemical Parasitology, 1999, 103, 15-23.	1.1	43