## Seiichi Ohta

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4682015/publications.pdf Version: 2024-02-01



**SEUCHI ОНТА** 

| #  | Article                                                                                                                                                                                                                        | IF   | CITATIONS |
|----|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 1  | Analysis of nanoparticle delivery to tumours. Nature Reviews Materials, 2016, 1, .                                                                                                                                             | 23.3 | 3,393     |
| 2  | DNA-controlled dynamic colloidal nanoparticle systems for mediating cellular interaction. Science, 2016, 351, 841-845.                                                                                                         | 6.0  | 180       |
| 3  | Injectable Hydrogel with Slow Degradability Composed of Gelatin and Hyaluronic Acid Cross-Linked by Schiff's Base Formation. Biomacromolecules, 2018, 19, 288-297.                                                             | 2.6  | 163       |
| 4  | In Situ Cross-Linkable Hydrogel of Hyaluronan Produced via Copper-Free Click Chemistry.<br>Biomacromolecules, 2013, 14, 3581-3588.                                                                                             | 2.6  | 108       |
| 5  | Investigating the optimum size of nanoparticles for their delivery into the brain assisted by focused ultrasound-induced blood–brain barrier opening. Scientific Reports, 2020, 10, 18220.                                     | 1.6  | 105       |
| 6  | Real time observation and kinetic modeling of the cellular uptake and removal of silicon quantum<br>dots. Biomaterials, 2012, 33, 4639-4645.                                                                                   | 5.7  | 59        |
| 7  | Development of carboxymethyl cellulose nonwoven sheet as a novel hemostatic agent. Journal of<br>Bioscience and Bioengineering, 2015, 119, 718-723.                                                                            | 1.1  | 47        |
| 8  | Injectable Hemostat Composed of a Polyphosphate-Conjugated Hyaluronan Hydrogel.<br>Biomacromolecules, 2018, 19, 3280-3290.                                                                                                     | 2.6  | 47        |
| 9  | Production of Cisplatin-Incorporating Hyaluronan Nanogels via Chelating Ligand–Metal<br>Coordination. Bioconjugate Chemistry, 2016, 27, 504-508.                                                                               | 1.8  | 43        |
| 10 | Enhancing Osteogenic Differentiation of MC3T3-E1 Cells by Immobilizing Inorganic Polyphosphate onto<br>Hyaluronic Acid Hydrogel. Biomacromolecules, 2015, 16, 166-173.                                                         | 2.6  | 39        |
| 11 | Characterizing the protein corona of sub-10â€ <sup>−</sup> nm nanoparticles. Journal of Controlled Release, 2019,<br>304, 102-110.                                                                                             | 4.8  | 38        |
| 12 | Advanced Solid Phase Extraction for Inorganic Analysis and Its Applications. Bunseki Kagaku, 2008, 57,<br>969-989.                                                                                                             | 0.1  | 35        |
| 13 | Selective labeling of the endoplasmic reticulum in live cells with silicon quantum dots. Chemical Communications, 2011, 47, 8409.                                                                                              | 2.2  | 35        |
| 14 | Fabrication of calcium phosphate-loaded carboxymethyl cellulose non-woven sheets for bone regeneration. Carbohydrate Polymers, 2018, 189, 322-330.                                                                             | 5.1  | 34        |
| 15 | Intraperitoneal Delivery of Cisplatin via a Hyaluronan-Based Nanogel/ <i>in Situ</i> Cross-Linkable<br>Hydrogel Hybrid System for Peritoneal Dissemination of Gastric Cancer. Molecular Pharmaceutics,<br>2017, 14, 3105-3113. | 2.3  | 32        |
| 16 | Size- and surface chemistry-dependent intracellular localization of luminescent silicon quantum dot<br>aggregates. Journal of Materials Chemistry, 2012, 22, 10631.                                                            | 6.7  | 31        |
| 17 | Preparation of uniform-sized hemoglobin–albumin microspheres as oxygen carriers by Shirasu porous<br>glass membrane emulsification technique. Colloids and Surfaces B: Biointerfaces, 2015, 127, 1-7.                          | 2.5  | 26        |
| 18 | A biocompatible calcium salt of hyaluronic acid grafted with polyacrylic acid. Carbohydrate<br>Polymers, 2015, 117, 43-53.                                                                                                     | 5.1  | 26        |

**SEIICHI OHTA** 

| #  | Article                                                                                                                                                                                                                                                                   | IF  | CITATIONS |
|----|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 19 | Silver-loaded carboxymethyl cellulose nonwoven sheet with controlled counterions for infected wound healing. Carbohydrate Polymers, 2022, 286, 119289.                                                                                                                    | 5.1 | 26        |
| 20 | Aggregates of silicon quantum dots as a drug carrier: selective intracellular drug release based on pH-responsive aggregation/dispersion. Chemical Communications, 2015, 51, 6422-6425.                                                                                   | 2.2 | 24        |
| 21 | Balance of antiperitoneal adhesion, hemostasis, and operability of compressed bilayer ultrapure alginate sponges. , 2022, 137, 212825.                                                                                                                                    |     | 23        |
| 22 | Size-Controlled Preparation of Microsized Perfluorocarbon Emulsions as Oxygen Carriers via the Shirasu Porous Glass Membrane Emulsification Technique. Langmuir, 2019, 35, 4094-4100.                                                                                     | 1.6 | 22        |
| 23 | Biocompatible Star Block Copolymer Hydrogel Cross-linked with Calcium Ions. ACS Biomaterials Science and Engineering, 2015, 1, 914-918.                                                                                                                                   | 2.6 | 18        |
| 24 | In Situ Fabrication of Double-Layered Hydrogels via Spray Processes to Prevent Postoperative Peritoneal Adhesion. ACS Biomaterials Science and Engineering, 2019, 5, 4790-4798.                                                                                           | 2.6 | 17        |
| 25 | Size control of phaseâ€separated liquid crystal droplets in a polymer matrix based on the phase diagram.<br>Journal of Polymer Science, Part B: Polymer Physics, 2012, 50, 863-869.                                                                                       | 2.4 | 16        |
| 26 | Alignment of vascular endothelial cells as a collective response to shear flow. Journal Physics D:<br>Applied Physics, 2015, 48, 245401.                                                                                                                                  | 1.3 | 16        |
| 27 | Intraperitoneal Administration of a Cisplatin-Loaded Nanogel through a Hybrid System Containing an Alginic Acid-Based Nanogel and an <i>In Situ</i> Cross-Linkable Hydrogel for Peritoneal Dissemination of Ovarian Cancer. Molecular Pharmaceutics, 2021, 18, 4090-4098. | 2.3 | 16        |
| 28 | In VivoRedox-Responsive Sol–Gel/Gel–Sol Transition of Star Block Copolymer Solution Based on Ionic<br>Cross-Linking. Macromolecules, 2017, 50, 5539-5548.                                                                                                                 | 2.2 | 15        |
| 29 | Prevention of Peritoneal Adhesions by Ferric Ion-Cross-Linked Hydrogels of Hyaluronic Acid Modified with Iminodiacetic Acids. ACS Biomaterials Science and Engineering, 2018, 4, 3405-3412.                                                                               | 2.6 | 15        |
| 30 | Switching of Cell Proliferation/Differentiation in Thiol–Maleimide Clickable Microcapsules Triggered<br>by <i>in Situ</i> Conjugation of Biomimetic Peptides. Biomacromolecules, 2019, 20, 2350-2359.                                                                     | 2.6 | 15        |
| 31 | Sizeâ€dependent interaction of cells and hemoglobin–albumin based oxygen carriers prepared using the<br><scp>SPG</scp> membrane emulsification technique. Biotechnology Progress, 2015, 31, 1676-1684.                                                                    | 1.3 | 13        |
| 32 | Development of human-derived hemoglobin–albumin microspheres as oxygen carriers using Shirasu<br>porous glass membrane emulsification. Journal of Bioscience and Bioengineering, 2018, 126, 533-539.                                                                      | 1.1 | 13        |
| 33 | The Prevention of Hepatectomy-Induced Adhesions by Bilayer Sponge Composed of Ultrapure Alginate.<br>Journal of Surgical Research, 2019, 242, 286-295.                                                                                                                    | 0.8 | 13        |
| 34 | Formation of Well-Aligned Thin Films of Rod-Like Nanoparticles via Solvent Evaporation: A Simulation<br>Study. Applied Physics Express, 2009, 2, 065002.                                                                                                                  | 1.1 | 12        |
| 35 | Simulation Model of Concentrated Colloidal Rod-Like Nanoparticles. Japanese Journal of Applied Physics, 2008, 47, 8124.                                                                                                                                                   | 0.8 | 11        |
| 36 | Analysis of the Calcium Alginate Gelation Process Using a Kenics Static Mixer. Industrial &<br>Engineering Chemistry Research, 2015, 54, 2099-2107.                                                                                                                       | 1.8 | 11        |

**SEIICHI OHTA** 

| #  | Article                                                                                                                                                                                                                       | IF         | CITATIONS    |
|----|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------|--------------|
| 37 | The Balance between the Hemostatic Effect and Immune Response of Hyaluronan Conjugated with<br>Different Chain Lengths of Inorganic Polyphosphate. Biomacromolecules, 2020, 21, 2695-2704.                                    | 2.6        | 11           |
| 38 | Bioinspired Perfluorocarbonâ€Based Oxygen Carriers with Concave Shape and Deformable Shell.<br>Advanced Materials Technologies, 2022, 7, 2100573.                                                                             | 3.0        | 11           |
| 39 | Pemetrexed-conjugated hyaluronan for the treatment of malignant pleural mesothelioma. European<br>Journal of Pharmaceutical Sciences, 2019, 138, 105008.                                                                      | 1.9        | 10           |
| 40 | Facile fabrication of PEC-coated PLGA microspheres via SPG membrane emulsification for the treatment of scleroderma by ECM degrading enzymes. Colloids and Surfaces B: Biointerfaces, 2019, 179, 453-461.                     | 2.5        | 10           |
| 41 | Prevention of postoperative peritoneal adhesions in rats with sidewall defect-bowel abrasions using metal ion-crosslinked N-succinyl chitosan hydrogels. Reactive and Functional Polymers, 2019, 145, 104374.                 | 2.0        | 9            |
| 42 | Analysis of Endoscopic Injectability and Post-Ejection Dripping of Yield Stress Fluids: Laponite,<br>Carbopol and Xanthan Gum. Journal of Chemical Engineering of Japan, 2021, 54, 500-511.                                   | 0.3        | 8            |
| 43 | Bone regeneration by calcium phosphateâ€loaded carboxymethyl cellulose nonwoven sheets in canine<br>femoral condyle defects. Journal of Biomedical Materials Research - Part B Applied Biomaterials, 2019,<br>107, 1516-1521. | 1.6        | 7            |
| 44 | Nonlinear Pressure Drop Oscillations during Gelation in a Kenics Static Mixer. Industrial &<br>Engineering Chemistry Research, 2020, 59, 4533-4541.                                                                           | 1.8        | 7            |
| 45 | Cisplatin–Chelated Iminodiacetic Acid–Conjugated Hyaluronic Acid Nanogels for the Treatment of<br>Malignant Pleural Mesothelioma in Mice. Molecular Pharmaceutics, 2022, 19, 853-861.                                         | 2.3        | 7            |
| 46 | Injectable bottlebrush triblock copolymer hydrogel crosslinked with ferric ions. Polymer, 2022, 240, 124519.                                                                                                                  | 1.8        | 5            |
| 47 | Thermoreversible gelation with ion-binding cross-links of variable multiplicity. Journal of Chemical Physics, 2019, 150, 174904.                                                                                              | 1.2        | 4            |
| 48 | Recent advances in animal cell technologies for industrial and medical applications. Journal of<br>Bioscience and Bioengineering, 2022, 133, 509-514.                                                                         | 1.1        | 3            |
| 49 | Facile and wide-range size tuning of conjugated polymer nanoparticles for biomedical applications as a fluorescent probe. RSC Advances, 2022, 12, 11606-11611.                                                                | 1.7        | 3            |
| 50 | lon-responsive fluorescence resonance energy transfer between grafted polyacrylic acid arms of star<br>block copolymers. Polymer, 2018, 137, 169-172.                                                                         | 1.8        | 2            |
| 51 | Analysis of model drug permeation through highly crosslinked and biodegradable polyethylene glycol membranes. Journal of Membrane Science, 2022, 645, 120218.                                                                 | 4.1        | 2            |
| 52 | Development of Carboxymethyl Cellulose Nonwoven Sheet as a Novel Hemostatic Material. Membrane,<br>2015, 40, 143-148.                                                                                                         | 0.0        | 1            |
| 53 | Preparation of Uniform-Sized Poly[methacryloxypropyl Tris(trimethylsiloxy)silane] Microspheres via<br>Shirasu Porous Glass Membrane Emulsification Technique. Journal of Chemical Engineering of Japan,<br>2013, 46, 777-784. | 0.3        | 1            |
| 54 | Bioinspired Perfluorocarbonâ€Based Oxygen Carriers with Concave Shape and Deformable Shell (Adv.) Tj ETQq                                                                                                                     | 0 0 0 rgBT | /Overlock 10 |

4

| #  | Article                                                                                                                                                                                                                                 | IF  | CITATIONS |
|----|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 55 | 1F34 Immobilizing inorganic polyphosphate onto hyaluronic acid for use as a hydrogel scaffold in osteochondral tissue engineering. The Proceedings of the Bioengineering Conference Annual Meeting of BED/JSME, 2015, 2015.27, 249-250. | 0.0 | 0         |
| 56 | Development of Novel CMC Nonwoven Sheets and Their Biomedical Applications. Membrane, 2022, 47, 28-35.                                                                                                                                  | 0.0 | 0         |