Tiancheng Pu

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4681810/publications.pdf

Version: 2024-02-01

686830 839053 1,991 18 13 18 citations h-index g-index papers 18 18 18 2651 docs citations times ranked citing authors all docs

#	Article	IF	CITATIONS
1	Carbothermal shock synthesis of high-entropy-alloy nanoparticles. Science, 2018, 359, 1489-1494.	6.0	1,065
2	Nanoceria-Supported Single-Atom Platinum Catalysts for Direct Methane Conversion. ACS Catalysis, 2018, 8, 4044-4048.	5 . 5	214
3	Induced activation of the commercial Cu/ZnO/Al2O3 catalyst for the steam reforming of methanol. Nature Catalysis, 2022, 5, 99-108.	16.1	155
4	Overview of Selective Oxidation of Ethylene to Ethylene Oxide by Ag Catalysts. ACS Catalysis, 2019, 9, 10727-10750.	5 . 5	104
5	Vacancy engineering of the nickel-based catalysts for enhanced CO2 methanation. Applied Catalysis B: Environmental, 2021, 282, 119561.	10.8	100
6	Oxo dicopper anchored on carbon nitride for selective oxidation of methane. Nature Communications, 2022, 13, 1375.	5.8	98
7	Effect of niobium oxide phase on the furfuryl alcohol dehydration. Catalysis Communications, 2017, 97, 65-69.	1.6	42
8	Strong Metalâ€"Support Interactions between Nickel and Iron Oxide during CO ₂ Hydrogenation. ACS Catalysis, 2021, 11, 11966-11972.	5 . 5	36
9	Recovery of ammonium from aqueous solutions using ZSM-5. Chemosphere, 2018, 198, 501-509.	4.2	29
10	Bridging adsorption analytics and catalytic kinetics for metal-exchanged zeolites. Nature Catalysis, 2021, 4, 144-156.	16.1	27
11	Formation and influence of surface hydroxyls on product selectivity during CO2 hydrogenation by Ni/SiO2 catalysts. Journal of Catalysis, 2021, 400, 228-233.	3.1	27
12	Insight into the reversible behavior of Lewis–BrÃ,nsted basic poly(ionic liquid)s in one-pot two-step chemical fixation of CO ₂ to linear carbonates. Green Chemistry, 2021, 23, 8571-8580.	4.6	23
13	Improved Prediction of Nanoalloy Structures by the Explicit Inclusion of Adsorbates in Cluster Expansions. Journal of Physical Chemistry C, 2018, 122, 18040-18047.	1.5	19
14	Nature and Reactivity of Oxygen Species on/in Silver Catalysts during Ethylene Oxidation. ACS Catalysis, 2022, 12, 4375-4381.	5.5	17
15	Recovery of Inorganic Phosphorus Using Copper-Substituted ZSM-5. ACS Sustainable Chemistry and Engineering, 2017, 5, 6192-6200.	3.2	10
16	Perovskite ABO ₃ â€Type MOFâ€Derived Carbon Decorated Fe ₃ O ₄ with Enhanced Lithium Storage Performance. ChemElectroChem, 2018, 5, 3426-3436.	1.7	9
17	Revealing the dependence of CO ₂ activation on hydrogen dissociation ability over supported nickel catalysts. AICHE Journal, 2022, 68, e17458.	1.8	9
18	Combined <i>In Situ</i> Diffuse Reflectance Infrared Fourier Transform Spectroscopy and Kinetic Studies on CO ₂ Methanation Reaction over Ni/Al ₂ O ₃ . Industrial & amp; Engineering Chemistry Research, 2022, 61, 9678-9685.	1.8	7